Publications


2012-2021

Competing Marangoni effects form a stagnant cap on the interface of a hydrogen bubble attached to a microelectrode. A.M. Meulenbroek, A.W. Vreman and N.G. Deen, Electrochimica Acta 385, 138298 (2021). PDF

Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm. M.T. de Groot and A.W. Vreman, Electrochimica Acta 369, 137684 (2021). PDF

Immersed boundary and overset grid methods assessed for Stokes flow due to an oscillating sphere. A.W. Vreman, J. Comp. Phys. 423, 109783 (2020). PDF paper      PDF corrigendum

CFD modeling of multiphase flow in an alkaline water electrolyzer. A. Zarghami, N.G. Deen and A.W. Vreman, Chem. Eng. Sci. 227, 115926 (2020). Preprint Journal

Turbulent channel flow past a moving array of spheres. A.W. Vreman and J.G.M. Kuerten, J. Fluid. Mech. 856, 580-632 (2018). PDF

A staggered overset grid method for resolved simulation of incompressible flow around moving spheres. A.W. Vreman, J. Comp. Phys. 333, 269-296 (2017). PDF paper      PDF corrigendum

Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres. A.W. Vreman, J. Fluid Mech. 796, 40-85 (2016). PDF

Collision frequency and radial distribution function in particle-laden channel flow. J.G.M. Kuerten and A.W. Vreman, Int. J. Multiphase Flow 87, 66-79 (2016). Journal

A third-order multistep time discretization for a Chebyshev tau spectral method. A.W. Vreman and J.G.M. Kuerten, J. Comp. Phys. 304, 162-169 (2016). Preprint Journal

Turbulence attenuation in particle-laden flow in smooth and rough channels. A.W. Vreman, J. Fluid Mech. 773, 103-136 (2015). PDF

Effect of droplet interaction on droplet-laden turbulent channel flow. J.G.M. Kuerten and A.W. Vreman, Phys. Fluids 27, 053304 (2015). PDF

Statistics of spatial derivatives of velocity and pressure in turbulent channel flow. A.W. Vreman and J.G.M. Kuerten, Phys. Fluids 26, 085103 (2014). PDF

Comparison of direct numerical simulation databases of turbulent channel flow at Re_tau=180. A.W. Vreman and J.G.M. Kuerten, Phys. Fluids 26, 015102 (2014). PDF

The projection method for the incompressible Navier-Stokes equations: The pressure near a no-slip wall. A.W. Vreman, J. Comp. Phys., 263, 353-374 (2014). Preprint Journal

2005-2011

Stabilization of the Eulerian model for multiphase flow by artificial diffusion. A.W. Vreman, J. Comp. Phys., 230, 1639-1651 (2011). Preprint Journal

Direct numerical simulation of hydrogen addition in turbulent premixed Bunsen flames using flamelet generated manifold reduction. A.W. Vreman, J.A. van Oijen, L.P.H. de Goey and R.J.M. Bastiaans, Int. J. Hydrogen Energy 34, 2778-2788 (2009). Preprint Journal

Subgrid scale modeling in large-eddy simulation of turbulent combustion using premixed flamelet chemistry. A.W. Vreman, J.A. van Oijen, L.P.H. de Goey and R.J.M. Bastiaans, Flow Turb. Combust. 82, 511-535 (2009). PDF

A similarity subgrid model for premixed turbulent combustion. A.W. Vreman, R.J.M. Bastiaans and B.J. Geurts, Flow Turb. Combust. 82, 233-248 (2009). PDF

A basic population balance model for fluid bed spray granulation. A.W. Vreman, C.E. van Lare and M.J. Hounslow, Chem. Eng. Sci. 64, 4389-4398 (2009). Preprint Journal

Two- and four-way coupled euler-lagrangian large-eddy simulation of turbulent particle-laden channel flow. A.W. Vreman, B.J. Geurts, N.G. Deen, J.A.M. Kuipers and J.G.M. Kuerten, Flow Turb. Combust. 82, 47-71 (2009). PDF

Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F. A.W. Vreman, B.A. Albrecht, J.A. van Oijen, L.P.H. de Goey and R.J.M. Bastiaans, Combust. Flame 153, 394-416 (2008). Preprint Journal

Turbulence characteristics of particle-laden pipe flow. A.W. Vreman, J. Fluid Mech. 584, 235-279 (2007). PDF

Supercritical shallow granular and hydraulic flow through a contraction: experiment, theory, and simulation. A.W. Vreman, M.. Al-Tarazi, J.A.M. Kuipers, M. van Sint Annaland, O. Bokhove, J. Fluid Mech. 578, 233-269 (2007). PDF

Macroscopic theory of multicomponent flows: irreversibility and well-posed equations. A.W. Vreman, Phys. D: Nonlinear Phenomena 225, 94-111 (2007). Preprint Journal

Subgrid-modeling in large-eddy simulation of complex flows. A.W. Vreman, Progress in Turbulence (Eds. M. Oberlack et al., Springer, Heidelberg), 301-304 (2007). Preprint

Can turbophoresis be predicted by large-eddy simulation? J.G.M. Kuerten and A.W. Vreman, Phys. Fluids 17, 011701 (2005). PDF





1998-2004

An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. A.W. Vreman, Phys. Fluids 16, 3670-3681 (2004). PDF

The adjoint filter operator in large-eddy simulation of turbulent flow. A.W. Vreman, Phys. Fluids 16, 2012-2022 (2004). PDF

Comment on 'Inapplicability of the dynamic Clark model to the large-eddy simulation of incompressible turbulent channel flows'. A.W. Vreman, Phys. Fluids 16, 2012-2022 (2004). PDF

Large-eddy simulation of a particle-laden turbulent channel flow. A.W. Vreman, B.J. Geurts, N.G. Deen and J.A.M. Kuipers, Direct and Large-Eddy Simulation V (Eds. R. Friedrich et al., Kluwer, Dordrecht), 271-278 (2004). Preprint

The filtering analog of the variational multiscale method in large-eddy simulation. A.W. Vreman, Phys. Fluids 15, L61-64 (2003). PDF

A new treatment of commutation-errors in LES. A.W. Vreman and B.J. Geurts, Advances in turbulence IX (Eds. I.P. Castro et al., CIMNE, Barcelona), 199-202 (2002). Preprint

Dynamic inverse modeling and its testing in large-eddy simulations of the mixing layer. J.G.M. Kuerten, B.J. Geurts, A.W. Vreman and M. Germano, Phys. Fluids 11, 3778-3785 (1999). PDF

1992-1997

Large-eddy simulation of the turbulent mixing layer. A.W. Vreman, B.J. Geurts and J.G.M. Kuerten, J. Fluid Mech. 339, 357-390 (1997). PDF

Compressible mixing layer growth rate and turbulence characteristics. A.W. Vreman, N.D. Sandham and K.H. Luo, J. Fluid Mech. 320, 235-258 (1996). PDF

Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer. B. Vreman, B. Geurts and H. Kuerten, Int. J. Num. Meth. Fluids 22, 297-311 (1996). PDF

Direct and large-eddy simulation of the temporal, turbulent compressible mixing layer. B. Vreman, PhD. Thesis, University of Twente (1995). PDF

A priori tests of large-eddy simulation of the compressible plane mixing layer. B. Vreman, B. Geurts and H. Kuerten, J. Eng. Math. 29, 299-327 (1995). PDF

Subgrid-modelling in LES of compressible flow. B. Vreman, B. Geurts and H. Kuerten, Appl. Scient. Res. 54, 191-203 (1995). PDF

Shocks in direct numerical simulation of the confined three-dimensional mixing layer. B. Vreman, H. Kuerten and B. Geurts, Phys. fluids 7, 2105-2107 (2005). PDF

Discretization error dominance over subgrid-terms in large eddy simulation of compressible shear layers in 2D. B. Vreman, B. Geurts and H. Kuerten, Comm. Num. Meth. Eng. 10, 785-790 (1994). PDF

On the formulation of the dynamic mixed subgrid-scale model. B. Vreman, B. Geurts and H. Kuerten, Phys. Fluids 6, 4057-4059 (1994). PDF

Realizability conditions for the turbulent stress tensor in large eddy simulation. B. Vreman, B. Geurts and H. Kuerten, J. Fluid Mech. 278, 351-364 (1994). PDF

A finite volume approach to large eddy simulation of compressible, homogeneous, isotropic, decaying turbulence. A.W. Vreman, B.J. Geurts, J.G.M. Kuerten and P.J. Zandbergen, Int. J. Num. Meth. Fluids 15, 799-816 (1992). PDF