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Recently, Kobayashi and Shimomura1 critized the use of
the dynamic Clark model in large-eddy simulation of channel
flow and provided the following reasons:

~1! An analysis revealed that the dynamic coefficient in the
model does not satisfy the correct near-wall asymptotics.

~2! Negative diffusion was analytically identified in the vis-
cous sublayer.

~3! Simulations with the model could not be completed due
to instability.

However, this is not a representative result because the au-
thors used a version of the gradient model which is only
valid for isotropic filters, while their grid was strongly aniso-
tropic and their test-filter in the dynamic procedure was also
strongly anisotropic. If the anisotropic version of the gradient
model is used, the three arguments listed above become in-
valid, as I will show in this Comment.

In the following, x1 , x2 , and x3 correspond to the
streamwise, normal, and spanwise direction, respectively.
The basic filter defines a filter widthD̄i for each direction.
The filter can be isotropic,

D̄15D̄25D̄35D̄, ~1!

or anisotropic,

D̄1ÞD̄2ÞD̄3 , ~2!

and then usuallyD̄5(D̄1D̄2D̄3)1/3. The basic filter width of-
ten equals the grid-spacing,D̄i5hi and the test-filter width in
the dynamic procedure usually equalsD̂i52D̄i . The filter
width of the test-filtered field,DR i , is then defined byDR i

2

5D̄i
21D̂i

2 for tophat filters.2,3 In large-eddy simulation of
channel flow the connection between grid and filter leads to
anisotropic filters, due to the anisotropy and nonuniformity
of the grid.

The dynamic Clark model, proposed by Vremanet al.,2,3

results from substituting the model proposed by Clarket al.4

in the Germano identity.5 The Clark model is the sum of the
gradient model and the Smagorinsky eddy-viscosity model.

The gradient model~or nonlinear/tensor-diffusivity model! is
obtained when Taylor expansions of the filtered velocity are
used,6
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Reference 2 analytically proves the instability of this model
in the Burgers equation, but also reports that the addition of
a dynamic eddy-viscosity stabilizes the model in the simula-
tion of a mixing layer.

It is important that expression~3! is valid for isotropic
filters only, which causes no problems for the applications in
Refs. 2–4. For anisotropic filters the Taylor expansion does
not lead to Eq.~3!, but to the gradient model derived in Ref.
2,
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]ū j

]x2
1D̄3

2 ]ūi
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The problems that Kobayashi and Shimomura1 report are
related to the use of the isotropic form~3! in combination
with a nonuniform anistropic grid and an anisotropic test-
filter.

Using the anisotropic form~4!, all the conclusions and
arguments in Ref. 1 change. First, the argument of improper
scaling as given in Ref. 1 dissappears, because the second-
order term in Eq.~24! of Ref. 1 falls out. That equation now
becomes

Li j 1Gi j 5O~D̂4!, ~5!

which holds for the anisotropic model in conjunction with
two- or three-dimensional test-filtering. Here,DR 25D̄2 should
be used for 2D test-filtering~5no test-filtering in the normal
direction!. The second-order term in Ref. 1 was entirely due
to the fact that the isotropic form~3! was used together with
a 2D test-filter~strongly anisotropic!. If the term vanishes,
the improper asymptotic scaling of the model coefficient as
expressed by Eq.~30! in Ref. 1 is invalid.

Second, the interesting argument of negative diffusion
caused by the gradient model changes. For the anisotropic
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form ~4!, the scaling of the dominant term in the gradient
model in the viscous sublayer becomes~ignoring spatial
variations in the filter width!

2
D̄2
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. ~6!

This is similar to Eq.~34! in Ref. 1, with the notable differ-
ence that nowD̄ is replaced byD̄2 . The total diffusion coef-
ficient in the laminar regime after a coordinate transforma-
tion by 45° can be calculated, like in Ref. 1. This results in a
negative diffusion only if

Ret D̄2.2A6 ~or D̄2
1.4.9!, ~7!

where D̄2 has been nondimensionalized with the channel
half-width. In contrast to Eq.~37! in Ref. 1, Eq.~7! will not
lead to problems in most large-eddy simulations of channel
flow, because the normal grid-spacing~filter width! in the
viscous sublayer is usually smaller than 4.9 viscous length-
scales. Equation~7! is restricted to the viscous sublayer. Out-
side this layer, analysis would be more complicated. And
there, the stabilization by the dynamic eddy-viscosity starts
functioning.

Third, an example is presented of a large-eddy simula-
tion of incompressible channel flow using the dynamic Clark
model, but without any instability problems. The channel
flow described in Ref. 1 is considered, corresponding to
Ret5590 and a domain 2pH32H3pH. The grid is collo-
cated and contains 33363333 cells. It is nonuniform in the
normal direction and stretched with a sinh-function.7 There
are three grid points between the wall andy1510. The dy-
namic Clark model2 is used and its gradient component is
given by Eq.~4!. The tophat test-filter is applied in three
directions and approximated with the trapezoidal rule using
D̂i52D̄i52hi , implying3 DR i5A5D̄i .

The numerical method employs standard second-order
central differences. The convective term is discretized in its
well-known skew-symmetric form, which conserves kinetic
energy. The implementation of this form at the walls is such
that momentum is also conserved. The discrete velocities and
pressure are defined at cell-centers, while the walls of the
channel coincides with cell-faces. The discrete Poisson equa-
tion is consistent with the continuity equation and conse-
quently involves the pressure values in (i , j ,k), (i 62,j ,k),
( i , j 62,k), and (i , j ,k62). Odd–even decoupling~the
‘‘chessboard pattern’’! is not observed, because the pressure
in odd and even cells can be coupled through the boundary
conditions@R. W. C. P. Verstappen~private communication!#.
In the present case, the wall-boundary condition of the pres-
sure couples the odd to the even locations in the normal
direction. The coupling in the periodic directions is caused
by the odd number of cells.

The viscous terms are treated with the standard seven
points discrete Laplacian operator. The subgrid-model is dis-
cretized according to formula~2.7! in Ref. 3. The time inte-
gration is performed using second-order Adams–Bashforth
for the convective and Euler-forward for the viscous and
subgrid-terms. The initial condition~provided by N. D.

Sandham! is a power-law profile perturbed with a set of sinu-
soidal waves. The time step equals 0.001H/ut .

Figure 1 shows a result of this simulation, which dem-
onstrates that the dynamic Clark model can be applied to
large-eddy simulation of turbulent channel flow. No instabil-
ity problems were encountered, in contrast to Ref. 1, where
the simulation could not be completed. Wall-damping was
not used, in contrast to Ref. 8, which reported good results
for a different version of the~anisotropic! dynamic Clark
model. That version employed explicit filtering and a four
times larger gradient component. Then Eq.~7! alters and
becomes more critical:D̄2

1.A6.
Figure 1 adds a result for 2D test-filtering. That simula-

tion was also stable, but compared to 3D test-filtering, the
mean profile for 2D test-filtering is different~much too high!.
For 2D test-filtering,DR 25D̄25h2 was substituted into both
the gradient and Smagorinsky component of the model on
the test-filtered level. With respect to the dynamic assump-
tion of similarity between filter levels, 3D test-filtering is
more natural than 2D test-filtering, in case the basic filter is
3D.
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FIG. 1. Mean flow profiles resulting from large-eddy simulations of turbu-
lent channel flow using the dynamic Clark model~Ref. 2! with a 3D ~solid!
and a 2D test-filter~circles!.
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