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The adjoint filter operator in large-eddy simulation of turbulent flow
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Adjoint and self-adjoint filter operators are introduced, such that large-eddy simu(bE®) with

a spatially variable filter width satisfies important physical properties: Conservation of momentum
and dissipation of kinetic energy. The combination of an arbitrary nonuniform explicit filter with the
Smagorinsky model leads to a new model of the turbulent stress tensor, which includes backscatter,
while the total subgrid dissipation is still positivanalytically. Nonuniform filter theory is further
developed, in order to provide a more solid foundation of practical LES. The paper distinguishes
between three sets of equations: The Navier—Stokes equdtidrish are physical conservation
laws), the filtered equations and the modeled large-eddy equations. It is shown that general filtering
of the Navier—Stokes equations destroys their local and global conservation properties. However, it
is proven that the adjoint of a normalized filter is conservative. As a result, the filtering equations are
globally conservative, for special nonuniforfe.g., self-adjoint filters. Implications for six
subgrid-models that require explicit filter operations are considered, such as dynamic, similarity,
filtering multiscale, and relaxation models. Incorporation of the adjoint filter analytically ensures
several models to conserve momentum and dissipate kinetic energy. Examples of adjoint and
self-adjoint filters are also provided, including a “three-points” self-adjoint filter and an adjoint filter
that is applicable on unstructured grids. In addition, it is shown that positive nonuniform
(self-adjoin} filters satisfy mathematical smoothing properties. The focus is on kernel filters, but
projection filters are also discussed, and nonuniform self-adjoint Laplace filters are defined. The
(orthogonal projection operator is proven to be a nonuniform kernel filter2@4 American
Institute of Physics.[DOI: 10.1063/1.1710479

I. INTRODUCTION For the time being, we only assume that the filter is linear

) ) . ) , .and commutes with the time derivative. Thus the filtered
Consider the incompressible Navier—Stokes equations iBquations read

a bounded domaitt) with appropriate boundary conditions

and initial conditions: ou.
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aax, - (9_xi+v P We will distinguish between the filtered equations and the

! modeled large-eddy equations, which are formulated in Sec.

whereu is the velocity,p the pressure, and the constant hi. , . . .
kinematic viscosity. The equations above are physical con- N MOst cases, the filter is an integral operator with a
servation laws, globally and locally. Global conservationSPecified filter kernel. The earliest filter is the top-hat filter
means that the total mass and momentum in the domain @g Deardorf. In fact Reypold%mtroduced ,th's averag-
constant, assuming periodic or zero Dirichlet boundary conind OPerator over a three-dimensional, spatial, rectangular
ditions. The divergence form of the equations also implied€d1on- In large-eddy simulation, a filter width is associated

local conservation within an arbitrary volume, provided theWith the filter, often proportional to the local grid-spacing,
fluxes through the volume face are taken into account. which defines a separation of the turbulence into resolved

The basic equations in large-eddy simulatitES) are and subgrid scales. Leondrdeneralized the top-hat filter

derived by the application of a filter to the Navier—StokesOperatiO” to a general convolution integral, admitting other
filter kernels, but with a uniform filter width. This filter com-

equations, , ) - ; :
mutes with spatial derivativésand the resulting filtered
— equations are still local conservation laws, because they can
f=Gf. 2 pe written in divergence form.
Next to the filtering approach, Schuménproposed a
dElectronic mail: bert@vremanresearch.nl procedure, which respects the local conservation laws, also
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for nonuniform averaging volumes. A more recent approactboundary conditions are discussed in Sec. V. Conclusions
separates resolved and subgrid scales with a projection, usimgll be drawn in Sec. VI.

a set of general basis functiofesg., Ref. 5. In this context,

Popé& imposed an important constraint on his modeled equa”- THE ADJOINT FILTER

tions: The(globa) conservation of momentum. Although the Consider a general filter, defined as a linear spatial op-
focus of the current paper is on “kernel” filters, the formu- erator by Eq(2). The following natural requirement is usu-
lation will be so general that the filtéR) can also represent ally imposed on the filter:

a projection operator. _ ) .

In practical applications, it is often desirable to have a Ge=c where VxeQ: c(x)=1, @
nonuniform filter, which is a filter that depends on the spatialwhich states that the filter does not alter a constant field.
location. In wall-bounded flows, for example, a relatively Such a filter isnormalized In addition, we call the filter
small filter width is required in the boundary layer, in order conservativeif it does not alter the integral of an arbitrary
to resolve the near wall structures responsible for the turbutunction f on ():
lent production. If the filter width varies, there is no general
commutation between filter and spatial derivatives in the fil-  Vf: f Gf(x)dx=f f(x)dx. (5
tered equation8-13 For a uniform filter, commutation is lost @ Q

near a solid boundary because the support of the filter doegjith a conservative filter, the filtered equatio(® remain

not remain inside the domair?. globally conservative, because then

We note that, due to the commutation problem, the fil- _
tered equations are in general not local conservation laws. f 3_f :f ifdx=0 ©6)
Thus, general nonuniform filtering destroys an important 00X Q0X; '

physical property of the Navier—Stokes equations. However,

common large-eddy simulations usually employ discretiza-for appropriate boundary conditions. If the volume integral is

tions of conservation laws and do not reckon with the non-the appropriat_e represgntatioh F)f the ensgmble average then
conservative character of the commutator error. Indeed, onf'® conservative filter is statistically consistent, that fis
might argue that, rather than modeling a quantity that is not=(f)- ) o ] )
conservative, the filtered equations should be recast as a form 10 introduce the adjoint filter, we first write the standard
which is at least globally conservative. innerproduct for functionsQ—R in the Hilbert space

In this paper we will, therefore, show that nonuniform Lo(2):
filters can be constructed which ensure global conservation.
Then the filtered equations resemble important physical (f,g)=J f(x)g(x)dx. (7)
properties of the Navier—Stokes equations. In actual large- ¢
eddy simulations the filter does not always explicitly occur inBy definition, theadjoint operatorG?*, corresponding t3,
the modeled equations and then the filter is mainly needed teatisfies®
interpret the. rgsults. Howgver, many s_,ubgnd_ models d_o_ln- Vg (G3,9)=(f,Gg). @)
volve explicit filter operations. In particular if the explicit
filter is taken on the vector-level, global conservation be-One can prove that a normalized filter leads to a conservative
comes relevant in practice. adjoint filter:

Furthermore, an essential physical feature of turbulence
is its dissipative character. The kinetic energy is cascaded Gaf(x)dx=(Gaf,c)z(f,Gc)z(f,c):f f(x)dx.
from large to small scales and a subgrid-model should there- @ @ 9
fore drain energy from the resolved scales. To increase the ©)
robustness of practical LES is another motivation to adopReversely, a conservative filter has a normalized adjoint,
dissipative subgrid models. For these reasons, eddy-viscosigince Eq.(5) implies
models were introduced, the Smagorinsky m&teeing the
most famous one. In this paper we will investigate how sev-  Vf: (G%,f)=(c,Gf )=J’ Gf(x)dx
eral existing models that employ an explicit filter can be o
reformulated, such that the dissipation of kinetic energy can
analytically be proven. =f f(x)dx=(c,f), (10)

For the purposes above, a counterpart of an arbitrary @
filter will be introduced: the adjoint filter, which will be which impliesG%=c. Thus a normalized filter and a con-
proven to be globally conservativ&ec. I). Section lll will  servative adjoint filter are equivalehtote that G*)® equals
consider six subgrid-models involving explicit test-filter op- G].
erations. For several models, conservation of momentum and The filter isself-adjointif G®=G. Evidently, a normal-
dissipation of kinetic energy become analytical propertiesjzed self-adjoint filter is conservative, which leads to glo-
due to the inclusion of the adjoint filter. Examples of adjointbally conservative filtered equations. In fact, a normalized
and self-adjoint filter operators will be constructed and somend conservative filter also provides conservative equations.
of them will be applicable to unstructured meshes. Relate@®uch a filter is not necessarily self-adjoint, as will be shown
topics, such as nonkernel filters, smoothing behavior antéhy an example in Sec. IV.
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The remaining part of this section concerns kernel filters.  In the special case of a convolution filt€r the kernel is
The most general expression for a nonuniform spatial kernedefined a¥K(x— &). This standard filter is uniform and the

filter is'® (compare the product filter in Ref) 6 normalization property implies conservation. Equatias)
shows that the convolution filter is self-adjoint, if the kernel
Gf(x):J’ Ko(x,&)f(&)dE, (11)  is even in its single argument—¢. Linear operator theory
Q

states that all eigenvalues of a self-adjoint operator are real.
The eigenvalues of a convolution filter are the values of the
Fourier transfer of the kernel, while the corresponding eigen-
functions are Fourier waves. Generalizing this, the “transfer
function” of a nonuniform filter can be defined by the eigen-
values ofG. If Q) is bounded an& is finite and continuous
then G is a compact operator. According to the Hilbert—

whereKq : Q0 X Q—R is the filter function andk, ¢ are loca-
tions in the three-dimensional flow domaid. A space-
dependent filter widthA (x) can be associated with this ker-
nel filter [see Appendix A for some possible definitions of
A(x)]. We assume that

) Schmidt theorert? the eigenfunctions o6 form an ortho-
fu LJKG(Xf)l dédx<es, (12 normal basis ot ,(Q).
Examples of nonuniform filters are the standard top-hat
which implies that the filter is a bounded operator. and Gaussian filter, with the uniforth replaced by the non-
For kernel filters, the normalization propert#) is  uniform A(x). Ghosal and Moihintroduced a class of non-
equivalent to a normalized filter function: uniform filters by defining the convolution integral in com-
putational space. Also filters can be constru&tédvhich
Vxe: j Kg(x,6)dé=1, (13)  reduce the commutation error to an arbitrarily high order
Q

term in A. Nevertheless, a particular realization of such a

a well-known property for common filters in large-eddy filter has a fixed order and then the approximate commuta-

simulation. The conservation prope) is equivalent to tion does not imply exact conservation of mass and momen-
tum.

All these examples of nonuniform filters satisfy the nor-
malization property. In each case, the adjoint filter is well
defined by Eq(16). The examples above are not self-adjoint,
_ because Eq(18) is not fulfilled, and are not conservative
_fQKG(X'g)dX fo(g)dg. (14 either [Eq. (15) does not hold, at least not exadtlyt is
interesting that Schumann’s volume averaging opetator
equivalent to a piecewise constant top-hat filter, which is

nonuniform, conservative and self-adjoint. Other exactly
Vée fQKG(X:E)dX:l- (15  conservative, self-adjoint kernel filters will be constructed in
Sec. IV.

L}Gf(x)dxz fﬂfQKG(x,g)f(g)dgdx

Consequently, a conservative filter is equivalent to

Note that the conservation property of the filter functi@s)

differs from the normalizatiori13) property. Many nonuni- ;. SUBGRID MODELS

form filters do not satisfy Eq(15). Thus, the corresponding ) ) o

filtered equations are in general not globally conservative. The theoretical properties of the adjoint filter extend the
Standard integral operator theory implies that the adjoinpossmllmes of several subgrid models to conserve momen-

of kernel filter is also a kernel filter. Its filter function equals tum and dissipate kinetic energy. We will analyze six models
that involve explicit filter operations in actual large-eddy

Kga(X, &) =Kg(€,X), (16)  simulations: two dynamic models, two filtering multiscale
models, a relaxation model and the similarity model. How-
ever, we first introduce the modeled large-eddy equations,
discuss their position with respect to the filtered equations
and formulate the standard Smagorinsky model.

In most actual large-eddy simulations, thesedeled
large-eddyequations are solved dn:

which is proven by

g(x)dx

(Gaf,g>=fQUQKG@,x)f(g)dg

=f f(E)U Ke(£:x)9(x)dx|dé=(f,GQ).
Q @ aw; 0
17) ax;
Obviously, the kernel filter is self-adjoint if the filter function MW IWW; ap W (19
iS symmetric in its arguments: —+ =——+tv—"R;,
at  ox X Iy

Vx,ee b Ko(x,6)=Ke(£,). (18 where the boundary conditions are usually the same as for

A normalized self-adjoint kernel filter is conservative indeed,the Navier—Stokes equations. The difference with the
because Eqg13) and(18) imply Eq. (15). This verifies that Navier—Stokes equations is the extra téRm which repre-
the filtered equations are globally conservative in case of aents the subgrid-model. As indicated for physical reasons it
normalized self-adjoint kernel filter. is required that, with appropriate boundary conditioRs,
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conserves momentum and dissipates kinetic energy. By coffier example a no-slip condition fow to let the boundary
struction, numerical method®.g., finite volume methodls integral vanish in the partial integration ef. The inte-
often conserve mass and momentum. In some cases, like gratedR; is zero ifm;; is not active at the boundary, which is
the MILES approach’ the numerical scheme takes the dis-the case if, for exampleA =0 at the boundary.
sipation of the subgrid turbulence into account. However, several models exist which incorporate ex-

Apparently, practical LES does not solve the filteredplicit filtering operations in their evaluations. The explicit
equations(3), but an approximation of the Navier—Stokes filter in the well-known dynamic modéGermancet al®) is
equations(19). The termR; is constructed such that the so- the test-filter. This model only modifies the model coefficient
lution w contains a smaller range of scales than the solutioin the Smagorinsky model and, consequently, the dynamic
u of the Navier—Stokes equatiofi. In order to interpretv, model is momentum conserving. It is guaranteed to dissipate
the basic filter operation, which leads to the filtered equakinetic energy, but only if the dynamic coefficient is positive.
tions (3), can be helpful. In case the magnitude Rfis  This is usually achieved with by a somewlaat hocclipping
substantial, the solutiow will never represent all features of procedure, which simply puts the eddy-viscosity to zero at
u, especially not the small-scale phenomena. However, ilocations where the dynamic procedure produces a negative
might be reasonable to require thatapproximately repre- value.
sents the large scales containeduinThe large scales are Recently, a dynamic model using the vector level iden-
extracted by a formal, basic filter, which definges tity has been proposed by Morinishi and Vasily@wyhich

The formal filter can not only be used for the interpreta-takes effects of the commutator into account through a dif-
tion of w, but also occurs, through the filtered equations, inferent determination of the dynamic coefficient. Like the
the definition of the subgrid terms that actually should bestandard dynamic model, this model is in divergence form,
modeled byR;. These definitions are important, since their which implies that the modeled large-eddy equati@i® are
mathematical structure can inspire the modeling; consider foocally conservative. However, the other set of equations, the
example the similarity and gradient models. Common defifiltered equationg3), is in general not conservative.
nitions distinguish between two subgrid terms: the commu-  Better agreement between the dynamically modeled
tator and the divergence of the turbulent stress. If the basiequations and the filtered equations is achieved, if the basic
filter is conservative, the commutator(iglobally) conserva- filter is normalized and conservative, because then both sets
tive and, consequently, the sum of the two subgrid terms isf equations aréglobally) conservative. In order to meet the
conservative. In addition, the dissipation of kinetic energysimilarity assumption at different filter levels in the dynamic
caused byR; can be interpreted as effects of both the com-procedure, test-filter and basic filter should ideally have a
mutator error and the standard turbulent stress tensor. Thesgnilar form. Consequently, the application of a normalized
observations support the definition of a new subgrid termand conservativée.g., self-adjointtest-filter is desirable, for
into which the commutators and the divergence of the turbuthe sake of consistency.

lent stress are lumped together. The same argument holds for the explicit filter in the
The earliest subgrid model employed in large-eddygeneralized similarity model below85). Similarity is not
simulation, is the Smagorinsky eddy-viscosity motfel: assumed for the multiscale and relaxation models in this sec-
g tion. They are consistent and have the desired analytic prop-
Ri=——mj;(w), erties for any normalized nonuniform filter. However, even
X then the application of a self-adjoint operator has the practi-

cal advantage that only one filter needs to be implemented,
20 because the filter and its adjoint counterpart are the same.
In the four models that follow, the explicit filter does not
, alter the model coefficient, but the structure of the model
itself. The original formulations are modified and the adjoint
|S(w)|2:28ij(w)8ij(w). operator of the explicit filter is incorporated. Two filtering
multiscale models are considered, one in divergence form. In
the case of wall-bounded flows, several multiscale
model€°23 can compete with the dynamic model, whereas
the standard Smagorinsky model without wall-damping is
not accurate in such flows.

m;j (w) = — 2CZA?[S(W)|S;j (W),

o ax

Sj(w)=3

Here Cg is the model parameter antl is the basic filter
width, often equal to the local grid-spacing.

The Smagorinsky model does not need any explicit defi
nition of the filter before it can be used in LES, although it

would be quite interesting to know whigpossibly probabi- The principle of multiscale models, which were intro-

listic) operator relates the predictions by the model to they o ing | ES by Hughest al,?* is that the subgrid model
physical velocity. The Smagorinsky model is in divergence

: . only depends on the smallest resolved scalese also
form, thus locally conservative, and has the following gIobaIGqumoﬁas and LaytoR®). The underlying reasoning is the
properties with appropriate boundary conditions: )

physical energy cascade; the energy transfer to subgrid scales
is mainly caused by the smallest resolved scales, and not so
€R= JQWi Ridx=0 and L)RidX=0y (21 much by the largest scales. The Smagorinsky model has in
particular been successful for homogeneous isotropic turbu-
which expresses that the model dissipates kinetic energy andnce. For this reason its behavior in inhomogeneous flows is
conserves momentum. Appropriate boundary conditions arexpected to improve, if it is applied after the largésiho-
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mogeneousscales have been omitted from the velocity field.direct evaluation of model24). This is now possible, since

A limitation of multiscale models is that it neglects the so-F? has become available, by the adjoint fil&?, through

called “spectral eddy-viscosity plateau,” if the explicit filter Eg. (22).

is in the inertial range. To take this aspect of turbulence into  Remark that mode{24) does in general not conserve

account, it may be necessary to model the large-scale equglobal momentum. However, this property is assure@ ik

tion as well*? normalized, since then the integral Bff is zero. The dissi-
The largest and smallest resolved scales are split by apation of model24) equalé*?®

explicit filter, G:

J
f=Gf+Ff, eRz_fQWiFa<(9_Xj[mij(FW)])dx
Ff=(1-0G)f, (22
:_f (FW,)m”(FW)n]dA
Faf=(1-G9f, 0
where If =f, the large scales are defined ®f and the I(Fw;)
small ones byFf. Note that the normalization @ implies fﬂ ox; m;; (Fw)dx. (29)

that G2 is conservative and, therefore, the integral FGff

equals zero. It is also remarked that in this section, the symIhe boundary integral over the surfa¢@ of the domain()

bol G represents the explicit filter in models, often not equalvanishes, iffw or m;; equals zero on the boundary. For the

to the basic filter. The explicit filter width in multiscale mod- Smagorinsky base model, E@5) reduces to

els is usually proportional td, for example, A, but it could

also be a fraction of a certain large-scale esz C§A2|S(Fw)|3dx> 0. (26)
Multiscale models were first proposed in a weak, varia- @

tional formulation’* involving scale separation by a projec- Obviously, model24) is dissipative for any dissipative base

tion operator. Dissipation of kinetic energy was proén. model m;; .

One of the models in this variational multiscale method is  The second modified version of the filtering multiscale

the “small-small” model, which is the Smagorinsky model model is in divergence form, unlike Eq4). For this pur-

entirely expressed in the small resolved scales. This Variq;ose, the small-scale extraction opera?fois not app"ed to
tional multiscale method, including its equations for thethe velocity but to the rate of strain:

large- and small-scales in the resolved velocity, can be ex-
tended to scale separation by a general filter within a strong
formulation?? One of the multiscale models tested in the
filtering analog reads

J a 272
Ri:_é,_le: (ZCSA |S|Sij),

s;j=F(S;j(w)), (27)
J
Ri=a—xj[Fmij(Fw)]. (23 |s|2=2s;;s;; -

The definition of the adjoint operat¢8) and partial integra-

Omitting one of theF’s in this model also provides accept- tion proves positive dissipation for arbitra6:

able simulation result&. Model (23) can only be proven to

dissipate kinetic energy & satisfies Eq(18) and commutes P

with the spatial derivativé? To remove these limitations, the fR:‘fQWiK[F (2C5A 7 s]s;j)1dx

adjoint operator can be used to formulate two modified ver- :

sions, in order to prove dissipation of kinetic energy for an 2

arbitrary nonuniform filter. - fQS‘i(W)Fa(ZCSA2|S|Sii)dX
The first modification of the filtering multiscale model

(23) loses the divergence form and, therefore, local conser-

vation momentum. It is obtained if the firBtis replaced by

F2 and put before the divergené:

_f WanFa(ZC§A2|S|S”)dA
Q)

P =f 2sijc§A2|s|sijdx=f CiA?s|®dx=0, (29

_ _J . o . provided the boundary term is zero. This is the case if the
This model is equivalent to the variational multiscale ye|ocities are zero on the boundary. Mo@2¥) involves ten
model?* if a variational form and a projection operator are filter operations, four more than E4) (and not twelve,
adopted. A variational form expresses each term as an innegince; is symmetric and trace-freThere is of course no
product with a test-function. In that case it is not necessary tQnalytical limitation to replace the eddy-viscositg@?Az|s|
know F2, since the innerproduct translates the actiodf  jn model (27) by any other eddy-viscosity.

to an action ofF. For this reason, the adjoint small-scale As mode|(27) is in divergence form, it Corresponds to a

extraction £7) remained unknown in Ref. 26; at the end anew model of the standard turbulent stress tensor:
variational form was proposed. The adjoint filte&%) did

: . _ 2,2
not occur at all. In the present paper we are interested in a  7ij= — F2(2C3A%[s|syj). (29
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This model is a symmetric tensor and includes backscatter, for N=0. This expression becomes globally conservative if
well-known physically realistic feature of turbulence. Back- the normalizedG is replaced by its adjoint counterpas,
scatter is defined by locally negative regioné’of® in the first term only, or in the entire equation. No operator
M= — 7S (W) (30) needs to be replaced @ is s_elf-adjoi_nt. If commutation is
R assumed and the last term in E5) is replaced byw;w;,
The integral ofIl equals the total subgrid dissipatia, the classic Leonard terhis recovered. In fact, Eq35) in-
which is positive. The total backscatter relative dg was cludes a model for the commutator error, because it equals a
about 13% in an LES that used mod29) and simulated the similarity model of the commutator and the divergence of the
channel flow described in Ref. 22. standard similarity model, which was proposed by Bardina
Model (27) is possibly the first subgrid model in litera- et al?82931
ture that combines backscatter with an analytically positive  Linear combinations of the models listed above can be
subgrid dissipation, without prescribing a specific numericakconsidered. In case of a similarity model plus one of the
method orad hocclipping. We remark that the standard defi- dissipative models above, a so-called mixed model is
nition of backscattéf is valid only if the model is in diver- obtained?®?-3! Another linear combination is the sum of
gence form. Consider, for example, EG4) and changer;; two dissipative models. As an example we mention @a)
to the expression between square brackets. Then the integialus (a small fraction of the standard Smagorinsky model.
of I is no longer equal to the subgrid dissipatien. The  As the two components individually satisfy global conserva-
variational multiscale methd8 has a similar problem with tion of momentum and dissipation of kinetic energy, the sum
the definition of backscatter. also has these analytical properties. A somewhat similar lin-
Another advantage of the divergence fof&v) is that  ear combination was already proposed by Schunfavinere
the corresponding modeled equations resemble the locallyne component accounted for inhomogeneous effects and the
conservative character of the Navier—Stokes equationsther for locally isotropic turbulence. However, dissipation
However, the nonuniformly filtered equations are not in di-of kinetic energy was not an analytical property yet.
vergence form, but only globally conservative for appropri- In the future, compared to linear dissipations, nonlinear
ate filters. From this point of view, a divergence form of the dissipative subgrid models, like Eq24) and(27), will pos-
subgrid model is not mandatory; global conservation is sufsibly be more attractive from a theoretical point of view, for
ficient. the following reason. Existence and unigueness of solutions
The next subgrid model that involves explicit filtered has been proven by Ladyzhensk#yia case of the Navier—
operations is the relaxation model’ In combination with a ~ Stokes equations plus the Smagorinsky mdse, e.g., Ref.
deconvolution model, accurate results for channel flow wer&3 for more explanation Until now, such a proof has not
reported by Stolzt al®® The following relaxation term is been delivered for the pure Navier—Stokes equations. An es-
found in Ref. 30: sential element in this important proof is that the Smagorin-
R = x(1— GGy . 31) sky model is nonlinear in the velocity.

The operatoiGy, is an (N+ 1)-terms standard geometric se-
ries expressed i, consequently
| — FN+1
R; :X( | — G_) W= yFN* 1w . (32  IV. CONSTRUCTION OF ADJOINT AND
I—F SELF-ADJOINT FILTERS
Next, this model is formulated in terms of the adjoint filter: ) ) ] ) )
e In this section three filters will be constructed. First, a

Ri=(F*)"(xF"w;), (33)  continuous self-adjoint filter is derived, starting from an ar-
where & equalsN+ 1. For a normalized, the integral of bitrary normalized filter. Then a compact adjoint filter that is
Faf is zero, which implies that the reformulated relaxation@PPplicable to arbitrary meshes will be constructed. Finally a
term globally conserves momentum, even for spatially Vary_compact self-adjoint filter, _vahd for ort_hogonal meshes_, w_|II
ing x=0. Also it dissipates kinetic energy for arbitrary non- P& proposed. The summation convention for repeated indices

uniform G: will not be used in this section.
For an arbitrary normalized filteG, not necessarily a
ER:I wi(Fa)”(xF”Wi)dx=f (F"w;) xF"w;dx=0. kernel filter, we define the linear operator
Q Q
(39 Hf=Gf 1f f Gf(y)]d
Here the definition of the adjoint operat(8) has been ap- -G Vv n[ (¥)=Gfy)ldy,
plied n times. (36)

The last subgrid model is the generalized similarity
model, introduced by formuléd) in Ref. 30, which reduces V=f dx.
to 0

_ i[(Gwi)(ij)] (35) ThenH is both normalizedHc=c [Eq. (4)], and conserva-

R=G
' IX; tive,

(?Win
ox;
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1f dx)
| foay- fQGf(y)dy)

- | tonay.

L}Hf(x)dx f Gf(x)dx+

(37

This does not imply thald is self-adjoint, but a self-adjoint
filter is now easily found:

J=L(H+H?). (39)

The filter J is self-adjoint, i.e.J?=J becausei?)®=H for
any operatoH. SinceH is normalized and conservativid?
is conservative and normalized. Consequenihjhas these
two properties as well.

For nonuniform kernel filters, the filter functions &f
andJ can be derived, after the definition

1
b(¢)= v fQKG(yf)dy (39

The normalization ol implies that the integral db overQ
equals one. The filter functions correspondinditandJ are

1
KH(X75):KG(X7€)+\_/—b(§)= (40)

1 1
~ 5b(x) - 5b(&).
(41

1
Ki(x,6)= KG(X H+5 KG(§ X+ g

The support of the self-adjoint filtek is obviously not com-

pact. As actual implementations of filters are always discrete,
we directly proceed with the discrete formulation in our con-

struction of compact filters.

To construct such local filters, we first assume a general

A. W. Vreman
1/(2 vm) if jeB;
0 otherwise
and
%710 otherwise (46)

are two examples of local filters. The corresponding filter
width is defined in Appendix A.

The adjoint filter corresponds to the transpose of the ma-
trix aj; .

(G*)i= 2, aVjf,. (47)
For this purpose the innerproduct
(f.9)= 2, Vifigi, (48)
is adopted and the proof reads
(Gaf,g)=i§B Vi(ng ajivjfj)gi
=2 2, Vifj(a;iVig) =(f,Gg). (49

jeBie

In addition, using the normalization constrai@3), G? is
proven to be conservative:

> Vi(Gaf )= 2 v(Z a,,Vf>

ieB

:jgsvjfj(g, a; I) 2 Vif;.  (50)

The last term is the discrete equivalent of the integraf.of
For the construction of self-adjoint filters, we turn to an

unstructured grid, wheriedenotes the index of the nodes and orthogonal grid. In that case a three-dimensional filter is usu-
B is the set of indices of all nodes. The control volumesally defined by the subsequent application of three “one-

around grid nodes are denoted Qy andV; is the volume of
Q),. The set of allQ); forms a partitioning of(.
A general normalized discrete filter is defined by

(Gf)i=j2B aijVif; . (42)
The normalization constraint implies
jeB

In order to create local filters, “neighbor” sef8; are de-

fined. For each, B; containsN; indicesj, such that nod¢

in physical space is identical or close to nade
Bi={jlj=i or j and

i are close in physical space (44)

The cases

dimensional” filters. For this reason the following construc-
tion is restricted to one dimension. Thus, the location of the

nodes are ax; and the “volumes” equal
Vi=3(Xit1—Xi—1). (51

Introducing a constang, with 0<y<1, we consider the fol-
lowing nonuniform three-points filter:

C(i’j:O if ||—J|>2,
P R
dji-1 2Vi—1Vi Y)
52
@i ;= vV, (62

Xiy1™
all+l 2VV|+1(1 F)/)

This filter is self-adjoint, because the matey is symmet-
ric. The filter is normalized because Eg23) can be derived
from Eg. (52) and, consequently, this self-adjoint three-
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points filter is conservative. The constaptdetermines the where o are the basis-function coefficients. Requirements
local filter width (formulate Appendix A for the discrete of normalization and conservation give additional constraints
case. on the basis-function coefficients.

In case of nonperiodic boundary conditions, the defini- It is remarkable that an arbitrary orthogonal projection
tions of a; ; and ay y May have to be changed. Assume, for operatorP can be written as a self-adjoint kernel filter. An
example, that the left boundary is a wall. If the normal co-orthonormal basis implies
ordinate,x, equals zero at the wall then

Vim byt sy e f@uods (56

where the first grid point,, is either on the wall or in the Substitution of these coefficients int65) yields
interior of (). The first diagonal coefficient is determined by

the normalization constraint: Pf(x):gl ( L}f(@vk(f)dka(x))

1 - 051‘2V2 (54)

al’l:V—l
I,

Vy anday y are defined in a similar way.
Suppose we havelapoints filter in one dimension with  The filter kernelKp(x,£) equals the expression between
k=2m+1, centered aroung; (m points at each sideOut-  square brackets. Al is symmetric in its arguments is
side the band ok diagonals, every value in the matrix; self-adjoint. Normalization and conservation are, therefore,
equals zero. Then the adjoint filter empldypoints as well.  equivalent. In fact, integral kernels can be derived for arbi-
A k-points normalized and conservative filter can be ob-trary bounded linear operators, including nonorthogonal pro-
tained by finding a solution to a linear system dff @qua-  jections. For this purpose the Riesz representation thédrem
tions withkN unknowns. Heré\ denotes the total number of should be applied for eache Q).
grid-points in one dimension. TheNBequations results from The reformulation of projections as nonuniform kernel
the requirements of normalization and conservation in eacfilters, directly implies that projection operators do in general
point, and the prescription of the filter width in each point. Anot commute with derivatives. However, the assumption of
self-adjoint filter would be a solution of R equations with  commutation is not needed if the closure problem is rede-
(m+1)N unknowns (use the symmetry propeiltyObvi-  fined. See Refs. 5, and Zgrojection methodsand Eq.(22)
ously, both solutions are not uniquekf>3. An analogous in Ref. 22(general filtering,.
procedure can be developed to find continuous compact self- Next, we define nonuniform “Laplace” filters, which are
adjoint filters, but the mathematics will become much morealways self-adjoint. The second-order term in the Taylor ex-
technical than for the discrete case. pansion ofGf for a top-hat or Gaussian convolution filter is
Note that the volume®/; in Eq. (42 have not been the Laplace operatcr*
lumped into the filter coefficienta;;, in order to make the

N

> vl Hvi(X)

k=1

f(£)dé. (57)

2 2
analogy between continuous and discrete filters more clear. A o°f 4
X i s Gf=f+ ——+0(A%). (58
In this way, discrete self-adjoint filters correspond to sym- 24 axﬁ

metric matrices.
Here A, is the filter width in thei-direction. A nonuniform

Laplace filter can be defined by

V. DISCUSSION 1 9
=T+ — —
Gf f 24 (9Xk

of
Aﬁg). (59)
In this section several topics related to the previous sec- k
tions will be discussed. First we will consider filters that areThis filter is normalized, conservative and also self-adjoint.
primarily not spatial integral operators: Projection filters, The latter is shown by partial integration, where boundary
Laplace filters and temporal filters. Afterwards, two charac-terms vanish, if either the filter width or the normal deriva-
terizations of the smoothing behavior of a filter will be tive of f is zero on the boundary. Replacing the plus by a
proven and analyzed for several filters. Finally, we will minus sign and taking a uniform, Eq. (59) becomes the
briefly discuss which boundary conditions should be im-inverse operator of the differentiér Helmholt2 filter, pro-
posed in large-eddy simulation. posed by German®.

An alternative to the common approach of LES is  We considered spatial filters in this paper, but Sec. Il can
projection-based LE%?* The function space on() is  be generalized to filters with a temporal dimension. For this

spanned by an infinite set of basis functiomg,v,, ..., purpose, the innerproduct needs to be extended to four di-
whereas the projection operaf@iprojects a signal on a finite  mensions, including the time direction. Then adjoint and
set of basis functions,, ... ,vy. A projection operation in  self-adjoint filters can be defined, but a complication is that
the context of LES can be regarded as a filter, here callethe adjoint operator of a causal filter, which at a given time
“projection filter”: only depends on=<t,, depends on the futuré*t,).
The second subject of this section concerns the essential
Gf=Pf=3_ awy, (59 purpose of a filter; the filter should smooth out a fluctuating
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signal to some extent. To characterize the smoothing behawidth and its normal derivative. In that case, boundary con-
ior of a nonuniform filter, theoretical smoothing propertiesditions of u and Gu are approximately the same and the
are analytically derived and discussed for several filter typedssue is not very important.

The first one states that a filter does not increase the global

maximum, neither decrease the global minimum of a van—VL CONCLUSIONS

able:
We have considered theoretical properties of nonuniform
Vi ming(f)<Gfsmaxy(f). (60) filters and models explicitly incorporating such filters. In or-
der to ensure that large-eddy simulations retain important
The second smoothing property, physical properties of the Navier—Stokes equations, a frame-

work has been developed in which the conservation of mo-
mentum and the dissipation of kinetic energy are essential. In
Vi f (Gf )degf f2dx, (61) this framework, the modeled equations in large-eddy simula-
Q Q tion inherit these important physical properties of the origi-
nal Navier—Stokes equations.
means that th&,-norm of a signal is not increased by filter- The adjoint filter has been introduced for a general non-
ing. This property implies that the norm of a normalized, uniform filter operator, which is a filter that allows a spatially
self-adjointG (the largest eigenvalue &), is precisely one. variable filter width. If the filter is a kernel filter, that is an
Another implication of(61) is that the kinetic energy in the integral operator with kernéd s(x,£), then the kernel of the
filtered field is smaller than in the unfiltered field. adjoint filter equalsKg(&,x). A normalized filterG was
For normalized nonuniform filters inequalifg0) holds  proven to be equivalent to a conservative adjoint counterpart
if the filter function is positive, as shown in Appendix B. If G2. A filter is conservative is conservative if it does not
such a kernel filter is conservative, the second smoothinghange the integral of an arbitrary signal.
property (61) holds as well(Appendix B. That appendix Unlike the Navier—Stokes equations, the nonuniformly
also proves that inequalit§61) is valid for orthogonal pro- filtered Navier—Stokes equations are in general not conser-
jection operators. The first smoothing property is not alwaysation laws. It was shown that, for general filters, global
satisfied for projection filters. As an example we mention theconservation is not satisfied either. However, normalized and
Fourier cut-off projection, which corresponds to a nonposi-conservative(e.g., self-adjoint filters do result in globally
tive kernel filter. Consequently, it may increase the globalconservative filtered equations. Then the filtered equations
extrema of a variablécompare the well-known Gibbs phe- resemble an essential physical feature of the Navier—Stokes
nomenomn. The nonuniform Laplace filter does generally not equations.
satisfy the smoothing properties above. However, the prop- In practice, the modeled equations in LES are the
erties are satisfied by the discrete version, provided all cofNavier—Stokes equations supplemented with a subgrid
responding coefficients;; are positive. Using the standard model. It is important to distinguish between these equations
seven points discrete Laplacian, this implies thathould be  and the(formal) filtered equations. The filtered equations
smaller than about 3.4 times the grid-spacing. mainly serve to interpret LES-results and to define the sub-
Finally, we discuss the boundary conditions, for examplegrid terms that have to be modeled. The usual subgrid terms
at a solid wall. The boundary conditions fbandGf are the are the commutator and the divergence of the turbulent
same ifA approaches zero near the w@hhosal and Moify). stress, which is locally conservative by definition. As the
Boundary conditions for normal derivatives may also be resum of the two terms is conservative for a conservative filter,
quired. Normal derivatives df andGf are the same in gen- the adoption of a conservative subgrid model is a natural
eral, only if A equals zero in an arbitrarily small interval choice, which is in theoretical agreement with both the fil-
[0,6] with 5>0. More specificallyG should be equal to the tered and unfiltered Navier—Stokes equations.

identity operatorl in this interval, otherwise the original Six subgrid models that involve explicit filter operations
boundary conditions and those of the filtered equations areere investigated: Two dynamic eddy-viscosity models,
possibly different. two filtering multiscale model¢cd), a relaxation mode(e)

In practice the modeled equatiofi®) are always solved and a generalized similarity modé). The dynamic models
by imposing for the modeled velocity; just the physical (ab) are obviously dissipative and momentum conserving for
boundary conditions afi; . This does not necessarily exclude any test filter. However, a normalized and conservatsay
the application of an explicit filter that is not exactly zero at self-adjoin} explicit filter is most consistent for the models
the wall. As indicated in Sec. Ill, similarity between the ex- (abf), since these models rely on the similarity assumption
plicit filter and the(theoretical basic filter is assumed for the between basic and explicit filter level. Only then both filtered
dynamic and similarity models only. In case of the dynamicand modeled equations share the global conservation prop-
model there is no need to require the theoretically desirearty.
similarity in the direct vicinity of the wall, since there the In particular, the last four modelsdef) benefit from the
dynamic coefficient usually equals zero. incorporation of the adjoint filter. In this way they conserve

In actual large-eddy simulations, the flow is often well momentum for each normalized nonuniform filter. In addi-
resolved close to the wall which implies a locally small grid tion, due to the incorporation of the adjoint filter, models
spacing and, consequently, small values of the normal filtecde were analytically shown to dissipate kinetic energy,
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which is in agreement with the physical concept of the en-and the other based on the central value of the filter function,
ergy cascade process in three-dimensional turbulence. 1

Model (d), expressed by Eq27), is the most attractive —— =Kg(X,X). (A4)
one. Its divergence form corresponds to a symmetric nonlin- A(x)

ear model of the turbulent stress tensor, formed from an aiBoth equations lead to the correct filter width for the stan-
bitrary nonuniform explicit filter and the Smagorinsky dard top-hat filter. These definitions, possibly with a propor-
model. The new model has the unusual, but desirable, comipnality constant, can be useful if the second moment does
bination of backscatter and an analytically positive dissipanot exist, which is, e.g., the case for the spectral cutoff.

tion. Model (f) explicitly incorporates a model for the com- Definition (A4) is the simplest expression. It results in
mutator, but also the dissipative models may be interpreted

to implicitly take into account the dissipative effects of both A(x;) = ﬂ
commutator and turbulent stress tensor. : ’

Adjoint and self-adjoint nonuniform filters have beenf
constructed, in continuous and discrete forms. The discret
adjoint can be calculated on a general unstructured grid.
compact, self-adjoint filter, applicable on orthogonal grids
has also been found.

(A5)

or the three points filte52). In the following, definition
A4) will be used to illustrate how the filter width of the
conservativeH and self-adjoint) in Sec. IV can be found.
"Take, for example, the nonuniform top-hat filter:

In addition several smoothing properties of a filter were 1 Ag(X)
considered and from this point of view a positive, normal- ~ Ke(X.6)= Ag(X) if [x—¢l< 2 (AB)
ized and conservative filter function is preferable within the .
class of nonuniform kernel filters. and zero elsewhere. Then the functiof¥) in Eq. (39) can
Non-kernel filters, like Laplace filters and projections P& expressed as
were also discussed. A redefined, nonuniform Laplace filter Yo
is self-adjoint. Projection based methods in LES have re- b(f)If A—(y)dy’ (A7)
cently gained increased attentioff-?428n this paper, it was =6
shown that an orthogonal projection operator is an examplevhere
of a self-adjoint kernel filter. In this way, approaches based A A
on projections can be integrated into the kernel-filtering ap- + c(y1) —E=v.+ c(y2) A8
1 2 g y2 2 ’ ( )
proach.
has to be solved for each The filter widths ofH andJ
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APPENDIX A: FILTER WIDTH DEFINITIONS Fina”y, we define the filter width for the two discrete

_ _ . _ . (nonorthogonal three-dimensional filters introduced in Sec.
To define a filter width for a kernel filter, we first con- IV. Suppose Eqs(45) or (46) represents an exp|icit filter,
sider a filter in one dimension. The filter width is often de- adopted for one of the subgrid models in Sec. III. In volume

fined by the second moment of the filter functibn: i, the corresponding local filter width, say, is equal to

(A(x))? ) A 13
12 :fQKG(ng)(f_Xm) d§1 Ai: ZB VJ (A].O)
(A1) L
Xm:J Ka(x, &) EdE. In cases the basic filter widtfof the _|mp_I|C|t grid-filten is
Q assumed to be equal to the local grid size,
If G=0 andG is normalized, then the first equation is equal ~ A;=V?, (A11)
to the variance of the following local probability distribution . .
function: can be used in volum¥;, assuming the control volumes
form a partioning of(}.
Px(§) =Kg(X,4). (A2)

Its mean equalg,,, which should be close t®.
Next, two simpler definitions are introduced, one involv- APPENDIX B: SMOOTHING PROPERTIES

ing the L,-norm of the kernel,
In the case of nonuniform kernel filters, a positivand

1 :j (Kg(x,£))2dé (A3) normalized kerneKg is required to prove the smoothing
AX)  Jo & ’ properties(60) and (61):
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Gf(x)= fne<x,§>f<§>d§< fQG<x,§> mava(f )dé

=maxy(f). (B1)
Application of this equation te- Gf yields
Gf=—maxy(—f)=ming(f), (B2)

and inequality(60) is thus satisfied. Positivity of a normal-
ized nonuniform kernel filters implies a positive trace of the
turbulent stress tensor and similarly a positive varianc
var(x) of a functionf(x) (see Ref. 1b If the filter is con-
servative as welle.g., self-adjointthen

f(f(x))zdxzf [(Gf(x))?+var(x)]dx
a Q

>fQ(Gf(x))2dx. (B3)

Evidently, inequality(61) holds.
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