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Adjoint and self-adjoint filter operators are introduced, such that large-eddy simulation~LES! with
a spatially variable filter width satisfies important physical properties: Conservation of momentum
and dissipation of kinetic energy. The combination of an arbitrary nonuniform explicit filter with the
Smagorinsky model leads to a new model of the turbulent stress tensor, which includes backscatter,
while the total subgrid dissipation is still positive~analytically!. Nonuniform filter theory is further
developed, in order to provide a more solid foundation of practical LES. The paper distinguishes
between three sets of equations: The Navier–Stokes equations~which are physical conservation
laws!, the filtered equations and the modeled large-eddy equations. It is shown that general filtering
of the Navier–Stokes equations destroys their local and global conservation properties. However, it
is proven that the adjoint of a normalized filter is conservative. As a result, the filtering equations are
globally conservative, for special nonuniform~e.g., self-adjoint! filters. Implications for six
subgrid-models that require explicit filter operations are considered, such as dynamic, similarity,
filtering multiscale, and relaxation models. Incorporation of the adjoint filter analytically ensures
several models to conserve momentum and dissipate kinetic energy. Examples of adjoint and
self-adjoint filters are also provided, including a ‘‘three-points’’ self-adjoint filter and an adjoint filter
that is applicable on unstructured grids. In addition, it is shown that positive nonuniform
~self-adjoint! filters satisfy mathematical smoothing properties. The focus is on kernel filters, but
projection filters are also discussed, and nonuniform self-adjoint Laplace filters are defined. The
~orthogonal! projection operator is proven to be a nonuniform kernel filter. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1710479#

I. INTRODUCTION

Consider the incompressible Navier–Stokes equations in
a bounded domainV with appropriate boundary conditions
and initial conditions:
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whereu is the velocity,p the pressure, andv the constant
kinematic viscosity. The equations above are physical con-
servation laws, globally and locally. Global conservation
means that the total mass and momentum in the domain is
constant, assuming periodic or zero Dirichlet boundary con-
ditions. The divergence form of the equations also implies
local conservation within an arbitrary volume, provided the
fluxes through the volume face are taken into account.

The basic equations in large-eddy simulation~LES! are
derived by the application of a filter to the Navier–Stokes
equations,

f̄ 5G f . ~2!

For the time being, we only assume that the filter is linear
and commutes with the time derivative. Thus the filtered
equations read
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We will distinguish between the filtered equations and the
modeled large-eddy equations, which are formulated in Sec.
III.

In most cases, the filter is an integral operator with a
specified filter kernel. The earliest filter is the top-hat filter
~e.g., Deardorff1!. In fact Reynolds2 introduced this averag-
ing operator over a three-dimensional, spatial, rectangular
region. In large-eddy simulation, a filter width is associated
with the filter, often proportional to the local grid-spacing,
which defines a separation of the turbulence into resolved
and subgrid scales. Leonard3 generalized the top-hat filter
operation to a general convolution integral, admitting other
filter kernels, but with a uniform filter width. This filter com-
mutes with spatial derivatives3 and the resulting filtered
equations are still local conservation laws, because they can
be written in divergence form.

Next to the filtering approach, Schumann4 proposed a
procedure, which respects the local conservation laws, alsoa!Electronic mail: bert@vremanresearch.nl
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for nonuniform averaging volumes. A more recent approach
separates resolved and subgrid scales with a projection, using
a set of general basis functions~e.g., Ref. 5!. In this context,
Pope5 imposed an important constraint on his modeled equa-
tions: The~global! conservation of momentum. Although the
focus of the current paper is on ‘‘kernel’’ filters, the formu-
lation will be so general that the filter~2! can also represent
a projection operator.

In practical applications, it is often desirable to have a
nonuniform filter, which is a filter that depends on the spatial
location. In wall-bounded flows, for example, a relatively
small filter width is required in the boundary layer, in order
to resolve the near wall structures responsible for the turbu-
lent production. If the filter width varies, there is no general
commutation between filter and spatial derivatives in the fil-
tered equations.6–13 For a uniform filter, commutation is lost
near a solid boundary because the support of the filter does
not remain inside the domain.7,9

We note that, due to the commutation problem, the fil-
tered equations are in general not local conservation laws.
Thus, general nonuniform filtering destroys an important
physical property of the Navier–Stokes equations. However,
common large-eddy simulations usually employ discretiza-
tions of conservation laws and do not reckon with the non-
conservative character of the commutator error. Indeed, one
might argue that, rather than modeling a quantity that is not
conservative, the filtered equations should be recast as a form
which is at least globally conservative.

In this paper we will, therefore, show that nonuniform
filters can be constructed which ensure global conservation.
Then the filtered equations resemble important physical
properties of the Navier–Stokes equations. In actual large-
eddy simulations the filter does not always explicitly occur in
the modeled equations and then the filter is mainly needed to
interpret the results. However, many subgrid models do in-
volve explicit filter operations. In particular if the explicit
filter is taken on the vector-level, global conservation be-
comes relevant in practice.

Furthermore, an essential physical feature of turbulence
is its dissipative character. The kinetic energy is cascaded
from large to small scales and a subgrid-model should there-
fore drain energy from the resolved scales. To increase the
robustness of practical LES is another motivation to adopt
dissipative subgrid models. For these reasons, eddy-viscosity
models were introduced, the Smagorinsky model14 being the
most famous one. In this paper we will investigate how sev-
eral existing models that employ an explicit filter can be
reformulated, such that the dissipation of kinetic energy can
analytically be proven.

For the purposes above, a counterpart of an arbitrary
filter will be introduced: the adjoint filter, which will be
proven to be globally conservative~Sec. II!. Section III will
consider six subgrid-models involving explicit test-filter op-
erations. For several models, conservation of momentum and
dissipation of kinetic energy become analytical properties,
due to the inclusion of the adjoint filter. Examples of adjoint
and self-adjoint filter operators will be constructed and some
of them will be applicable to unstructured meshes. Related
topics, such as nonkernel filters, smoothing behavior and

boundary conditions are discussed in Sec. V. Conclusions
will be drawn in Sec. VI.

II. THE ADJOINT FILTER

Consider a general filter, defined as a linear spatial op-
erator by Eq.~2!. The following natural requirement is usu-
ally imposed on the filter:

Gc5c where ;xPV: c~x!51, ~4!

which states that the filter does not alter a constant field.
Such a filter isnormalized. In addition, we call the filter
conservative, if it does not alter the integral of an arbitrary
function f on V:

; f : E
V

G f~x!dx5E
V

f ~x!dx. ~5!

With a conservative filter, the filtered equations~3! remain
globally conservative, because then
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for appropriate boundary conditions. If the volume integral is
the appropriate representation of the ensemble average then
the conservative filter is statistically consistent, that is^ f̄ &
5^ f &.

To introduce the adjoint filter, we first write the standard
innerproduct for functionsV→R in the Hilbert space
L2(V):

~ f ,g!5E
V

f ~x!g~x!dx. ~7!

By definition, theadjoint operatorGa, corresponding toG,
satisfies15

; f ,g: ~Gaf ,g!5~ f ,Gg!. ~8!

One can prove that a normalized filter leads to a conservative
adjoint filter:

E
V

Gaf ~x!dx5~Gaf ,c!5~ f ,Gc!5~ f ,c!5E
V

f ~x!dx.

~9!

Reversely, a conservative filter has a normalized adjoint,
since Eq.~5! implies

; f : ~Gac, f !5~c,G f !5E
V

G f~x!dx

5E
V

f ~x!dx5~c, f !, ~10!

which impliesGac5c. Thus a normalized filter and a con-
servative adjoint filter are equivalent@note that (Ga)a equals
G].

The filter isself-adjointif Ga5G. Evidently, a normal-
ized self-adjoint filter is conservative, which leads to glo-
bally conservative filtered equations. In fact, a normalized
and conservative filter also provides conservative equations.
Such a filter is not necessarily self-adjoint, as will be shown
by an example in Sec. IV.
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The remaining part of this section concerns kernel filters.
The most general expression for a nonuniform spatial kernel
filter is16 ~compare the product filter in Ref. 6!

G f~x!5E
V

KG~x,j! f ~j!dj, ~11!

whereKG :V3V→R is the filter function andx,j are loca-
tions in the three-dimensional flow domainV. A space-
dependent filter widthD(x) can be associated with this ker-
nel filter @see Appendix A for some possible definitions of
D(x)]. We assume that

E
V
E

V
uKG~x,j!u2djdx,`, ~12!

which implies that the filter is a bounded operator.
For kernel filters, the normalization property~4! is

equivalent to a normalized filter function:

;xPV: E
V

KG~x,j!dj51, ~13!

a well-known property for common filters in large-eddy
simulation. The conservation property~5! is equivalent to
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V

f ~j!dj. ~14!

Consequently, a conservative filter is equivalent to

;jPV: E
V

KG~x,j!dx51. ~15!

Note that the conservation property of the filter function~15!
differs from the normalization~13! property. Many nonuni-
form filters do not satisfy Eq.~15!. Thus, the corresponding
filtered equations are in general not globally conservative.

Standard integral operator theory implies that the adjoint
of kernel filter is also a kernel filter. Its filter function equals

KGa~x,j!5KG~j,x!, ~16!

which is proven by

~Gaf ,g!5E
V
F E

V
KG~j,x! f ~j!djGg~x!dx
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KG~j,x!g~x!dxGdj5~ f ,Gg!.

~17!

Obviously, the kernel filter is self-adjoint if the filter function
is symmetric in its arguments:

;x,jPV: KG~x,j!5KG~j,x!. ~18!

A normalized self-adjoint kernel filter is conservative indeed,
because Eqs.~13! and~18! imply Eq. ~15!. This verifies that
the filtered equations are globally conservative in case of a
normalized self-adjoint kernel filter.

In the special case of a convolution filterC, the kernel is
defined asKC(x2j). This standard filter is uniform and the
normalization property implies conservation. Equation~18!
shows that the convolution filter is self-adjoint, if the kernel
is even in its single argumentx2j. Linear operator theory
states that all eigenvalues of a self-adjoint operator are real.
The eigenvalues of a convolution filter are the values of the
Fourier transfer of the kernel, while the corresponding eigen-
functions are Fourier waves. Generalizing this, the ‘‘transfer
function’’ of a nonuniform filter can be defined by the eigen-
values ofG. If V is bounded andKG is finite and continuous
then G is a compact operator. According to the Hilbert–
Schmidt theorem15 the eigenfunctions ofG form an ortho-
normal basis ofL2(V).

Examples of nonuniform filters are the standard top-hat
and Gaussian filter, with the uniformD replaced by the non-
uniform D(x). Ghosal and Moin7 introduced a class of non-
uniform filters by defining the convolution integral in com-
putational space. Also filters can be constructed8,11 which
reduce the commutation error to an arbitrarily high order
term in D. Nevertheless, a particular realization of such a
filter has a fixed order and then the approximate commuta-
tion does not imply exact conservation of mass and momen-
tum.

All these examples of nonuniform filters satisfy the nor-
malization property. In each case, the adjoint filter is well
defined by Eq.~16!. The examples above are not self-adjoint,
because Eq.~18! is not fulfilled, and are not conservative
either @Eq. ~15! does not hold, at least not exactly#. It is
interesting that Schumann’s volume averaging operator4 is
equivalent to a piecewise constant top-hat filter, which is
nonuniform, conservative and self-adjoint. Other exactly
conservative, self-adjoint kernel filters will be constructed in
Sec. IV.

III. SUBGRID MODELS

The theoretical properties of the adjoint filter extend the
possibilities of several subgrid models to conserve momen-
tum and dissipate kinetic energy. We will analyze six models
that involve explicit filter operations in actual large-eddy
simulations: two dynamic models, two filtering multiscale
models, a relaxation model and the similarity model. How-
ever, we first introduce the modeled large-eddy equations,
discuss their position with respect to the filtered equations
and formulate the standard Smagorinsky model.

In most actual large-eddy simulations, thesemodeled
large-eddyequations are solved onV:
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where the boundary conditions are usually the same as for
the Navier–Stokes equations. The difference with the
Navier–Stokes equations is the extra termRi , which repre-
sents the subgrid-model. As indicated for physical reasons it
is required that, with appropriate boundary conditions,Ri
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conserves momentum and dissipates kinetic energy. By con-
struction, numerical methods~e.g., finite volume methods!
often conserve mass and momentum. In some cases, like in
the MILES approach,17 the numerical scheme takes the dis-
sipation of the subgrid turbulence into account.

Apparently, practical LES does not solve the filtered
equations~3!, but an approximation of the Navier–Stokes
equations~19!. The termRi is constructed such that the so-
lution w contains a smaller range of scales than the solution
u of the Navier–Stokes equations~1!. In order to interpretw,
the basic filter operation, which leads to the filtered equa-
tions ~3!, can be helpful. In case the magnitude ofRi is
substantial, the solutionw will never represent all features of
u, especially not the small-scale phenomena. However, it
might be reasonable to require thatw approximately repre-
sents the large scales contained inu. The large scales are
extracted by a formal, basic filter, which definesū.

The formal filter can not only be used for the interpreta-
tion of w, but also occurs, through the filtered equations, in
the definition of the subgrid terms that actually should be
modeled byRi . These definitions are important, since their
mathematical structure can inspire the modeling; consider for
example the similarity and gradient models. Common defi-
nitions distinguish between two subgrid terms: the commu-
tator and the divergence of the turbulent stress. If the basic
filter is conservative, the commutator is~globally! conserva-
tive and, consequently, the sum of the two subgrid terms is
conservative. In addition, the dissipation of kinetic energy
caused byRi can be interpreted as effects of both the com-
mutator error and the standard turbulent stress tensor. These
observations support the definition of a new subgrid term,
into which the commutators and the divergence of the turbu-
lent stress are lumped together.

The earliest subgrid model employed in large-eddy
simulation, is the Smagorinsky eddy-viscosity model:14

Ri5
]

]xj
mi j ~w!,

mi j ~w!522CS
2D2uS~w!uSi j ~w!,

~20!

Si j ~w!5
1

2 S ]wi
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1
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]xi
D ,

uS~w!u252Si j ~w!Si j ~w!.

Here CS is the model parameter andD is the basic filter
width, often equal to the local grid-spacing.

The Smagorinsky model does not need any explicit defi-
nition of the filter before it can be used in LES, although it
would be quite interesting to know which~possibly probabi-
listic! operator relates the predictions by the model to the
physical velocity. The Smagorinsky model is in divergence
form, thus locally conservative, and has the following global
properties with appropriate boundary conditions:

eR5E
V

wiRidx>0 and E
V

Ridx50, ~21!

which expresses that the model dissipates kinetic energy and
conserves momentum. Appropriate boundary conditions are

for example a no-slip condition forw to let the boundary
integral vanish in the partial integration ofeR . The inte-
gratedRi is zero ifmi j is not active at the boundary, which is
the case if, for example,D50 at the boundary.

However, several models exist which incorporate ex-
plicit filtering operations in their evaluations. The explicit
filter in the well-known dynamic model~Germanoet al.18! is
the test-filter. This model only modifies the model coefficient
in the Smagorinsky model and, consequently, the dynamic
model is momentum conserving. It is guaranteed to dissipate
kinetic energy, but only if the dynamic coefficient is positive.
This is usually achieved with by a somewhatad hocclipping
procedure, which simply puts the eddy-viscosity to zero at
locations where the dynamic procedure produces a negative
value.

Recently, a dynamic model using the vector level iden-
tity has been proposed by Morinishi and Vasilyev,19 which
takes effects of the commutator into account through a dif-
ferent determination of the dynamic coefficient. Like the
standard dynamic model, this model is in divergence form,
which implies that the modeled large-eddy equations~19! are
locally conservative. However, the other set of equations, the
filtered equations~3!, is in general not conservative.

Better agreement between the dynamically modeled
equations and the filtered equations is achieved, if the basic
filter is normalized and conservative, because then both sets
of equations are~globally! conservative. In order to meet the
similarity assumption at different filter levels in the dynamic
procedure, test-filter and basic filter should ideally have a
similar form. Consequently, the application of a normalized
and conservative~e.g., self-adjoint! test-filter is desirable, for
the sake of consistency.

The same argument holds for the explicit filter in the
generalized similarity model below~35!. Similarity is not
assumed for the multiscale and relaxation models in this sec-
tion. They are consistent and have the desired analytic prop-
erties for any normalized nonuniform filter. However, even
then the application of a self-adjoint operator has the practi-
cal advantage that only one filter needs to be implemented,
because the filter and its adjoint counterpart are the same.

In the four models that follow, the explicit filter does not
alter the model coefficient, but the structure of the model
itself. The original formulations are modified and the adjoint
operator of the explicit filter is incorporated. Two filtering
multiscale models are considered, one in divergence form. In
the case of wall-bounded flows, several multiscale
models20–23 can compete with the dynamic model, whereas
the standard Smagorinsky model without wall-damping is
not accurate in such flows.

The principle of multiscale models, which were intro-
duced into LES by Hugheset al.,24 is that the subgrid model
only depends on the smallest resolved scales~see also
Guermond25 and Layton26!. The underlying reasoning is the
physical energy cascade; the energy transfer to subgrid scales
is mainly caused by the smallest resolved scales, and not so
much by the largest scales. The Smagorinsky model has in
particular been successful for homogeneous isotropic turbu-
lence. For this reason its behavior in inhomogeneous flows is
expected to improve, if it is applied after the largest~inho-
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mogeneous! scales have been omitted from the velocity field.
A limitation of multiscale models is that it neglects the so-
called ‘‘spectral eddy-viscosity plateau,’’ if the explicit filter
is in the inertial range. To take this aspect of turbulence into
account, it may be necessary to model the large-scale equa-
tion as well.22

The largest and smallest resolved scales are split by an
explicit filter, G:

f 5G f1F f ,

F f 5~ I 2G! f , ~22!

Faf 5~ I 2Ga! f ,

where I f 5 f , the large scales are defined byG f and the
small ones byF f . Note that the normalization ofG implies
that Ga is conservative and, therefore, the integral ofFaf
equals zero. It is also remarked that in this section, the sym-
bol G represents the explicit filter in models, often not equal
to the basic filter. The explicit filter width in multiscale mod-
els is usually proportional toD, for example, 2D, but it could
also be a fraction of a certain large-scaleL.

Multiscale models were first proposed in a weak, varia-
tional formulation,24 involving scale separation by a projec-
tion operator. Dissipation of kinetic energy was proven.24

One of the models in this variational multiscale method is
the ‘‘small-small’’ model, which is the Smagorinsky model
entirely expressed in the small resolved scales. This varia-
tional multiscale method, including its equations for the
large- and small-scales in the resolved velocity, can be ex-
tended to scale separation by a general filter within a strong
formulation.22 One of the multiscale models tested in the
filtering analog reads

Ri5
]

]xj
@Fmi j ~Fw!#. ~23!

Omitting one of theF ’s in this model also provides accept-
able simulation results.22 Model ~23! can only be proven to
dissipate kinetic energy ifG satisfies Eq.~18! and commutes
with the spatial derivative.22 To remove these limitations, the
adjoint operator can be used to formulate two modified ver-
sions, in order to prove dissipation of kinetic energy for an
arbitrary nonuniform filter.

The first modification of the filtering multiscale model
~23! loses the divergence form and, therefore, local conser-
vation momentum. It is obtained if the firstF is replaced by
Fa and put before the divergence:26

Ri5FaS ]

]xj
@mi j ~Fw!# D . ~24!

This model is equivalent to the variational multiscale
model,24 if a variational form and a projection operator are
adopted. A variational form expresses each term as an inner-
product with a test-function. In that case it is not necessary to
know Fa, since the innerproduct translates the action ofFa

to an action ofF. For this reason, the adjoint small-scale
extraction (Fa) remained unknown in Ref. 26; at the end a
variational form was proposed. The adjoint filter (Ga) did
not occur at all. In the present paper we are interested in a

direct evaluation of model~24!. This is now possible, since
Fa has become available, by the adjoint filterGa, through
Eq. ~22!.

Remark that model~24! does in general not conserve
global momentum. However, this property is assured ifG is
normalized, since then the integral ofFaf is zero. The dissi-
pation of model~24! equals24,26

eR52E
V

wiF
aS ]

]xj
@mi j ~Fw!# Ddx

52E
]V

~Fwi !mi j ~Fw!njdA

1E
V

]~Fwi !

]xj
mi j ~Fw!dx. ~25!

The boundary integral over the surface]V of the domainV
vanishes, ifFw or mi j equals zero on the boundary. For the
Smagorinsky base model, Eq.~25! reduces to

eR5E
V

CS
2D2uS~Fw!u3dx>0. ~26!

Obviously, model~24! is dissipative for any dissipative base
modelmi j .

The second modified version of the filtering multiscale
model is in divergence form, unlike Eq.~24!. For this pur-
pose, the small-scale extraction operatorF is not applied to
the velocity but to the rate of strain:

Ri52
]

]xj
Fa~2CS

2D2ususi j !,

si j 5F~Si j ~w!!, ~27!

usu252si j si j .

The definition of the adjoint operator~8! and partial integra-
tion proves positive dissipation for arbitraryG:

eR52E
V

wi

]

]xj
@Fa~2CS

2D2ususi j !#dx

5E
V

Si j ~w!Fa~2CS
2D2ususi j !dx

2E
]V

winjF
a~2CS

2D2ususi j !dA

5E
V

2si j CS
2D2ususi j dx5E

V
CS

2D2usu3dx>0, ~28!

provided the boundary term is zero. This is the case if the
velocities are zero on the boundary. Model~27! involves ten
filter operations, four more than Eq.~24! ~and not twelve,
sinceSi j is symmetric and trace-free!. There is of course no
analytical limitation to replace the eddy-viscosity 2CS

2D2usu
in model ~27! by any other eddy-viscosity.

As model~27! is in divergence form, it corresponds to a
new model of the standard turbulent stress tensor:

t i j 52Fa~2CS
2D2ususi j !. ~29!
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This model is a symmetric tensor and includes backscatter, a
well-known physically realistic feature of turbulence. Back-
scatter is defined by locally negative regions of27–29

P52t i j Si j ~w!. ~30!

The integral ofP equals the total subgrid dissipationeR ,
which is positive. The total backscatter relative toeR was
about 13% in an LES that used model~29! and simulated the
channel flow described in Ref. 22.

Model ~27! is possibly the first subgrid model in litera-
ture that combines backscatter with an analytically positive
subgrid dissipation, without prescribing a specific numerical
method orad hocclipping. We remark that the standard defi-
nition of backscatter27 is valid only if the model is in diver-
gence form. Consider, for example, Eq.~24! and changet i j

to the expression between square brackets. Then the integral
of P is no longer equal to the subgrid dissipationeR . The
variational multiscale method24 has a similar problem with
the definition of backscatter.

Another advantage of the divergence form~27! is that
the corresponding modeled equations resemble the locally
conservative character of the Navier–Stokes equations.
However, the nonuniformly filtered equations are not in di-
vergence form, but only globally conservative for appropri-
ate filters. From this point of view, a divergence form of the
subgrid model is not mandatory; global conservation is suf-
ficient.

The next subgrid model that involves explicit filtered
operations is the relaxation model.5,30 In combination with a
deconvolution model, accurate results for channel flow were
reported by Stolzet al.30 The following relaxation term is
found in Ref. 30:

Ri5x~ I 2GGN!wi . ~31!

The operatorGN is an (N11)-terms standard geometric se-
ries expressed inF, consequently

Ri5xS I 2G
I 2FN11

I 2F Dwi5xFN11wi . ~32!

Next, this model is formulated in terms of the adjoint filter:

Ri5~Fa!n~xFnwi !, ~33!

where 2n equalsN11. For a normalizedG, the integral of
Faf is zero, which implies that the reformulated relaxation
term globally conserves momentum, even for spatially vary-
ing x>0. Also it dissipates kinetic energy for arbitrary non-
uniform G:

eR5E
V

wi~Fa!n~xFnwi !dx5E
V

~Fnwi !xFnwidx>0.

~34!

Here the definition of the adjoint operator~8! has been ap-
plied n times.

The last subgrid model is the generalized similarity
model, introduced by formula~9! in Ref. 30, which reduces
to

Ri5GS ]wiwj

]xj
D2

]

]xj
@~Gwi !~Gwj !#, ~35!

for N50. This expression becomes globally conservative if
the normalizedG is replaced by its adjoint counterpartGa,
in the first term only, or in the entire equation. No operator
needs to be replaced ifG is self-adjoint. If commutation is
assumed and the last term in Eq.~35! is replaced bywiwj ,
the classic Leonard term3 is recovered. In fact, Eq.~35! in-
cludes a model for the commutator error, because it equals a
similarity model of the commutator and the divergence of the
standard similarity model, which was proposed by Bardina
et al.28,29,31

Linear combinations of the models listed above can be
considered. In case of a similarity model plus one of the
dissipative models above, a so-called mixed model is
obtained.22,28–31Another linear combination is the sum of
two dissipative models. As an example we mention Eq.~27!
plus ~a small fraction of! the standard Smagorinsky model.
As the two components individually satisfy global conserva-
tion of momentum and dissipation of kinetic energy, the sum
also has these analytical properties. A somewhat similar lin-
ear combination was already proposed by Schumann,4 where
one component accounted for inhomogeneous effects and the
other for locally isotropic turbulence. However, dissipation
of kinetic energy was not an analytical property yet.

In the future, compared to linear dissipations, nonlinear
dissipative subgrid models, like Eqs.~24! and~27!, will pos-
sibly be more attractive from a theoretical point of view, for
the following reason. Existence and uniqueness of solutions
has been proven by Ladyzhenskaya32 in case of the Navier–
Stokes equations plus the Smagorinsky model~see, e.g., Ref.
33 for more explanation!. Until now, such a proof has not
been delivered for the pure Navier–Stokes equations. An es-
sential element in this important proof is that the Smagorin-
sky model is nonlinear in the velocity.

IV. CONSTRUCTION OF ADJOINT AND
SELF-ADJOINT FILTERS

In this section three filters will be constructed. First, a
continuous self-adjoint filter is derived, starting from an ar-
bitrary normalized filter. Then a compact adjoint filter that is
applicable to arbitrary meshes will be constructed. Finally a
compact self-adjoint filter, valid for orthogonal meshes, will
be proposed. The summation convention for repeated indices
will not be used in this section.

For an arbitrary normalized filterG, not necessarily a
kernel filter, we define the linear operator

H f 5G f1
1

V E
V

@ f ~y!2G f~y!#dy,

~36!

V5E
V

dx.

ThenH is both normalized,Hc5c @Eq. ~4!#, and conserva-
tive,
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E
V

H f ~x!dx5E
V

G f~x!dx1S 1

V E
V

dxD
3S E

V
f ~y!dy2E

V
G f~y!dyD

5E
V

f ~y!dy. ~37!

This does not imply thatH is self-adjoint, but a self-adjoint
filter is now easily found:

J5 1
2 ~H1Ha!. ~38!

The filter J is self-adjoint, i.e.,Ja5J because (Ha)a5H for
any operatorH. SinceH is normalized and conservative,Ha

is conservative and normalized. Consequently,J has these
two properties as well.

For nonuniform kernel filters, the filter functions ofH
andJ can be derived, after the definition

b~j!5
1

V E
V

KG~y,j!dy. ~39!

The normalization ofG implies that the integral ofb overV
equals one. The filter functions corresponding toH andJ are

KH~x,j!5KG~x,j!1
1

V
2b~j!, ~40!

KJ~x,j!5
1

2
KG~x,j!1

1

2
KG~j,x!1

1

V
2

1

2
b~x!2

1

2
b~j!.

~41!

The support of the self-adjoint filterJ is obviously not com-
pact. As actual implementations of filters are always discrete,
we directly proceed with the discrete formulation in our con-
struction of compact filters.

To construct such local filters, we first assume a general
unstructured grid, wherei denotes the index of the nodes and
B is the set of indices of all nodes. The control volumes
around grid nodes are denoted byV i andVi is the volume of
V i . The set of allV i forms a partitioning ofV.

A general normalized discrete filter is defined by

~G f ! i5 (
j PB

a i j Vj f j . ~42!

The normalization constraint implies

(
j PB

a i j Vj51. ~43!

In order to create local filters, ‘‘neighbor’’ setsBi are de-
fined. For eachi , Bi containsNi indices j , such that nodej
in physical space is identical or close to nodei :

Bi5$ j u j 5 i or j and

i are close in physical space%. ~44!

The cases

a i j 5H 1Y S (
mPBi

VmD if j PBi

0 otherwise

~45!

and

a i j 5H 1/~NiVj ! if j PBi

0 otherwise
, ~46!

are two examples of local filters. The corresponding filter
width is defined in Appendix A.

The adjoint filter corresponds to the transpose of the ma-
trix a i j :

~Gaf ! i5 (
j PB

a j i Vj f j . ~47!

For this purpose the innerproduct

~ f ,g!5(
i PB

Vi f igi , ~48!

is adopted and the proof reads

~Gaf ,g!5(
i PB

Vi S (
j PB

a j i Vj f j Dgi

5 (
j PB

(
i PB

Vj f j~a j i Vigi !5~ f ,Gg!. ~49!

In addition, using the normalization constraint~43!, Ga is
proven to be conservative:

(
i PB

Vi~Gaf ! i5(
i PB

Vi S (
j PB

a j i Vj f j D
5 (

j PB
Vj f j S (

i PB
a j i Vi D 5 (

j PB
Vj f j . ~50!

The last term is the discrete equivalent of the integral off .
For the construction of self-adjoint filters, we turn to an

orthogonal grid. In that case a three-dimensional filter is usu-
ally defined by the subsequent application of three ‘‘one-
dimensional’’ filters. For this reason the following construc-
tion is restricted to one dimension. Thus, the location of the
nodes are atxi and the ‘‘volumes’’ equal

Vi5
1
2 ~xi 112xi 21!. ~51!

Introducing a constantg, with 0<g<1, we consider the fol-
lowing nonuniform three-points filter:

a i , j50 if u i 2 j u>2,

a i ,i 215
xi2xi 21

2Vi 21Vi
~12g!,

~52!
a i ,i5g/Vi ,

a i ,i 115
xi 112xi

2ViVi 11
~12g!.

This filter is self-adjoint, because the matrixa i j is symmet-
ric. The filter is normalized because Eq.~43! can be derived
from Eq. ~52! and, consequently, this self-adjoint three-
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points filter is conservative. The constantg determines the
local filter width ~formulate Appendix A for the discrete
case!.

In case of nonperiodic boundary conditions, the defini-
tions ofa1,1 andaN,N may have to be changed. Assume, for
example, that the left boundary is a wall. If the normal co-
ordinate,x, equals zero at the wall then

V15 1
2 ~x21x1!, ~53!

where the first grid point,x1 , is either on the wall or in the
interior of V. The first diagonal coefficient is determined by
the normalization constraint:

a1,15
12a1,2V2

V1
. ~54!

VN andaN,N are defined in a similar way.
Suppose we have ak-points filter in one dimension with

k52m11, centered aroundxi (m points at each side!. Out-
side the band ofk diagonals, every value in the matrixa i j

equals zero. Then the adjoint filter employsk-points as well.
A k-points normalized and conservative filter can be ob-
tained by finding a solution to a linear system of 3N equa-
tions withkN unknowns. HereN denotes the total number of
grid-points in one dimension. The 3N equations results from
the requirements of normalization and conservation in each
point, and the prescription of the filter width in each point. A
self-adjoint filter would be a solution of 2N equations with
(m11)N unknowns ~use the symmetry property!. Obvi-
ously, both solutions are not unique ifk.3. An analogous
procedure can be developed to find continuous compact self-
adjoint filters, but the mathematics will become much more
technical than for the discrete case.

Note that the volumesVj in Eq. ~42! have not been
lumped into the filter coefficientsa i j , in order to make the
analogy between continuous and discrete filters more clear.
In this way, discrete self-adjoint filters correspond to sym-
metric matrices.

V. DISCUSSION

In this section several topics related to the previous sec-
tions will be discussed. First we will consider filters that are
primarily not spatial integral operators: Projection filters,
Laplace filters and temporal filters. Afterwards, two charac-
terizations of the smoothing behavior of a filter will be
proven and analyzed for several filters. Finally, we will
briefly discuss which boundary conditions should be im-
posed in large-eddy simulation.

An alternative to the common approach of LES is
projection-based LES.5,24 The function space onV is
spanned by an infinite set of basis functionsv1 ,v2 , . . . ,
whereas the projection operatorP projects a signal on a finite
set of basis functionsv1 , . . . ,vN . A projection operation in
the context of LES can be regarded as a filter, here called
‘‘projection filter’’:

G f5P f5Sk51
N akvk , ~55!

where ak are the basis-function coefficients. Requirements
of normalization and conservation give additional constraints
on the basis-function coefficients.5

It is remarkable that an arbitrary orthogonal projection
operatorP can be written as a self-adjoint kernel filter. An
orthonormal basis implies

ak5E
V

f ~j!vk~j!dj. ~56!

Substitution of these coefficients into~55! yields

P f~x!5 (
k51

N S E
V

f ~j!vk~j!djvk~x! D
5E

V
F (

k51

N

vk~j!vk~x!G f ~j!dj. ~57!

The filter kernel KP(x,j) equals the expression between
square brackets. AsKP is symmetric in its arguments,P is
self-adjoint. Normalization and conservation are, therefore,
equivalent. In fact, integral kernels can be derived for arbi-
trary bounded linear operators, including nonorthogonal pro-
jections. For this purpose the Riesz representation theorem15

should be applied for eachxPV.
The reformulation of projections as nonuniform kernel

filters, directly implies that projection operators do in general
not commute with derivatives. However, the assumption of
commutation is not needed if the closure problem is rede-
fined. See Refs. 5, and 24~projection methods! and Eq.~22!
in Ref. 22~general filtering!.

Next, we define nonuniform ‘‘Laplace’’ filters, which are
always self-adjoint. The second-order term in the Taylor ex-
pansion ofG f for a top-hat or Gaussian convolution filter is
the Laplace operator:3,34

G f5 f 1
Dk

2

24

]2f

]xk
2 1O~D4!. ~58!

Here D i is the filter width in thei -direction. A nonuniform
Laplace filter can be defined by

G f5 f 1
1

24

]

]xk
S Dk

2 ] f

]xk
D . ~59!

This filter is normalized, conservative and also self-adjoint.
The latter is shown by partial integration, where boundary
terms vanish, if either the filter width or the normal deriva-
tive of f is zero on the boundary. Replacing the plus by a
minus sign and taking a uniformD, Eq. ~59! becomes the
inverse operator of the differential~or Helmholtz! filter, pro-
posed by Germano.35

We considered spatial filters in this paper, but Sec. II can
be generalized to filters with a temporal dimension. For this
purpose, the innerproduct needs to be extended to four di-
mensions, including the time direction. Then adjoint and
self-adjoint filters can be defined, but a complication is that
the adjoint operator of a causal filter, which at a given timet1

only depends ont<t1 , depends on the future (t>t1).
The second subject of this section concerns the essential

purpose of a filter; the filter should smooth out a fluctuating
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signal to some extent. To characterize the smoothing behav-
ior of a nonuniform filter, theoretical smoothing properties
are analytically derived and discussed for several filter types.
The first one states that a filter does not increase the global
maximum, neither decrease the global minimum of a vari-
able:

; f : minV~ f !<G f<maxV~ f !. ~60!

The second smoothing property,

; f : E
V

~G f !2dx<E
V

f 2dx, ~61!

means that theL2-norm of a signal is not increased by filter-
ing. This property implies that the norm of a normalized,
self-adjointG ~the largest eigenvalue ofG), is precisely one.
Another implication of~61! is that the kinetic energy in the
filtered field is smaller than in the unfiltered field.

For normalized nonuniform filters inequality~60! holds
if the filter function is positive, as shown in Appendix B. If
such a kernel filter is conservative, the second smoothing
property ~61! holds as well~Appendix B!. That appendix
also proves that inequality~61! is valid for orthogonal pro-
jection operators. The first smoothing property is not always
satisfied for projection filters. As an example we mention the
Fourier cut-off projection, which corresponds to a nonposi-
tive kernel filter. Consequently, it may increase the global
extrema of a variable~compare the well-known Gibbs phe-
nomenon!. The nonuniform Laplace filter does generally not
satisfy the smoothing properties above. However, the prop-
erties are satisfied by the discrete version, provided all cor-
responding coefficientsa i j are positive. Using the standard
seven points discrete Laplacian, this implies thatD should be
smaller than about 3.4 times the grid-spacing.

Finally, we discuss the boundary conditions, for example
at a solid wall. The boundary conditions forf andG f are the
same ifD approaches zero near the wall~Ghosal and Moin7!.
Boundary conditions for normal derivatives may also be re-
quired. Normal derivatives off andG f are the same in gen-
eral, only if D equals zero in an arbitrarily small interval
@0,d# with d.0. More specifically,G should be equal to the
identity operatorI in this interval, otherwise the original
boundary conditions and those of the filtered equations are
possibly different.

In practice the modeled equations~19! are always solved
by imposing for the modeled velocitywi just the physical
boundary conditions ofui . This does not necessarily exclude
the application of an explicit filter that is not exactly zero at
the wall. As indicated in Sec. III, similarity between the ex-
plicit filter and the~theoretical! basic filter is assumed for the
dynamic and similarity models only. In case of the dynamic
model there is no need to require the theoretically desired
similarity in the direct vicinity of the wall, since there the
dynamic coefficient usually equals zero.

In actual large-eddy simulations, the flow is often well
resolved close to the wall which implies a locally small grid
spacing and, consequently, small values of the normal filter

width and its normal derivative. In that case, boundary con-
ditions of u and Gu are approximately the same and the
issue is not very important.

VI. CONCLUSIONS

We have considered theoretical properties of nonuniform
filters and models explicitly incorporating such filters. In or-
der to ensure that large-eddy simulations retain important
physical properties of the Navier–Stokes equations, a frame-
work has been developed in which the conservation of mo-
mentum and the dissipation of kinetic energy are essential. In
this framework, the modeled equations in large-eddy simula-
tion inherit these important physical properties of the origi-
nal Navier–Stokes equations.

The adjoint filter has been introduced for a general non-
uniform filter operator, which is a filter that allows a spatially
variable filter width. If the filter is a kernel filter, that is an
integral operator with kernelKG(x,j), then the kernel of the
adjoint filter equalsKG(j,x). A normalized filter G was
proven to be equivalent to a conservative adjoint counterpart
Ga. A filter is conservative is conservative if it does not
change the integral of an arbitrary signal.

Unlike the Navier–Stokes equations, the nonuniformly
filtered Navier–Stokes equations are in general not conser-
vation laws. It was shown that, for general filters, global
conservation is not satisfied either. However, normalized and
conservative~e.g., self-adjoint! filters do result in globally
conservative filtered equations. Then the filtered equations
resemble an essential physical feature of the Navier–Stokes
equations.

In practice, the modeled equations in LES are the
Navier–Stokes equations supplemented with a subgrid
model. It is important to distinguish between these equations
and the ~formal! filtered equations. The filtered equations
mainly serve to interpret LES-results and to define the sub-
grid terms that have to be modeled. The usual subgrid terms
are the commutator and the divergence of the turbulent
stress, which is locally conservative by definition. As the
sum of the two terms is conservative for a conservative filter,
the adoption of a conservative subgrid model is a natural
choice, which is in theoretical agreement with both the fil-
tered and unfiltered Navier–Stokes equations.

Six subgrid models that involve explicit filter operations
were investigated: Two dynamic eddy-viscosity models~ab!,
two filtering multiscale models~cd!, a relaxation model~e!
and a generalized similarity model~f!. The dynamic models
~ab! are obviously dissipative and momentum conserving for
any test filter. However, a normalized and conservative~say
self-adjoint! explicit filter is most consistent for the models
~abf!, since these models rely on the similarity assumption
between basic and explicit filter level. Only then both filtered
and modeled equations share the global conservation prop-
erty.

In particular, the last four models~cdef! benefit from the
incorporation of the adjoint filter. In this way they conserve
momentum for each normalized nonuniform filter. In addi-
tion, due to the incorporation of the adjoint filter, models
~cde! were analytically shown to dissipate kinetic energy,
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which is in agreement with the physical concept of the en-
ergy cascade process in three-dimensional turbulence.

Model ~d!, expressed by Eq.~27!, is the most attractive
one. Its divergence form corresponds to a symmetric nonlin-
ear model of the turbulent stress tensor, formed from an ar-
bitrary nonuniform explicit filter and the Smagorinsky
model. The new model has the unusual, but desirable, com-
bination of backscatter and an analytically positive dissipa-
tion. Model ~f! explicitly incorporates a model for the com-
mutator, but also the dissipative models may be interpreted
to implicitly take into account the dissipative effects of both
commutator and turbulent stress tensor.

Adjoint and self-adjoint nonuniform filters have been
constructed, in continuous and discrete forms. The discrete
adjoint can be calculated on a general unstructured grid. A
compact, self-adjoint filter, applicable on orthogonal grids,
has also been found.

In addition several smoothing properties of a filter were
considered and from this point of view a positive, normal-
ized and conservative filter function is preferable within the
class of nonuniform kernel filters.

Non-kernel filters, like Laplace filters and projections
were also discussed. A redefined, nonuniform Laplace filter
is self-adjoint. Projection based methods in LES have re-
cently gained increased attention.5,20,24,28In this paper, it was
shown that an orthogonal projection operator is an example
of a self-adjoint kernel filter. In this way, approaches based
on projections can be integrated into the kernel-filtering ap-
proach.
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APPENDIX A: FILTER WIDTH DEFINITIONS

To define a filter width for a kernel filter, we first con-
sider a filter in one dimension. The filter width is often de-
fined by the second moment of the filter function:3

~D~x!!2

12
5E

V
KG~x,j!~j2xm!2dj,

~A1!

xm5E
V

KG~x,j!jdj.

If G>0 andG is normalized, then the first equation is equal
to the variance of the following local probability distribution
function:

px~j!5KG~x,j!. ~A2!

Its mean equalsxm , which should be close tox.
Next, two simpler definitions are introduced, one involv-

ing theL2-norm of the kernel,

1

D~x!
5E

V
~KG~x,j!!2dj, ~A3!

and the other based on the central value of the filter function,

1

D~x!
5KG~x,x!. ~A4!

Both equations lead to the correct filter width for the stan-
dard top-hat filter. These definitions, possibly with a propor-
tionality constant, can be useful if the second moment does
not exist, which is, e.g., the case for the spectral cutoff.

Definition ~A4! is the simplest expression. It results in

D~xi !5
Vi

g
, ~A5!

for the three points filter~52!. In the following, definition
~A4! will be used to illustrate how the filter width of the
conservativeH and self-adjointJ in Sec. IV can be found.
Take, for example, the nonuniform top-hat filter:

KG~x,j!5
1

DG~x!
if ux2ju,

DG~x!

2
, ~A6!

and zero elsewhere. Then the functionb(j) in Eq. ~39! can
be expressed as

b~j!5E
y1

y2 1

DG~y!
dy, ~A7!

where

y11
DG~y1!

2
5j5y21

DG~y2!

2
, ~A8!

has to be solved for eachj. The filter widths ofH and J
equal

DJ~x!5DH~x!5
1

KH~x,x!
5

DG~x!

11~12b~x!!DG~x!/V
,

~A9!

which is easily recognized as a correction toDG(x), the filter
width of G.

Finally, we define the filter width for the two discrete
~nonorthogonal! three-dimensional filters introduced in Sec.
IV. Suppose Eqs.~45! or ~46! represents an explicit filter,
adopted for one of the subgrid models in Sec. III. In volume
i , the corresponding local filter width, sayD̂ i , is equal to

D̂ i5F (
j PBi

Vj G1/3

. ~A10!

In cases the basic filter width~of the implicit grid-filter! is
assumed to be equal to the local grid size,

D i5Vi
1/3, ~A11!

can be used in volumeVi , assuming the control volumes
form a partioning ofV.

APPENDIX B: SMOOTHING PROPERTIES

In the case of nonuniform kernel filters, a positive16 and
normalized kernelKG is required to prove the smoothing
properties~60! and ~61!:
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G f~x!5E
V

G~x,j! f ~j!dj<E
V

G~x,j! maxV~ f !dj

5maxV~ f !. ~B1!

Application of this equation to2G f yields

G f>2maxV~2 f !5minV~ f !, ~B2!

and inequality~60! is thus satisfied. Positivity of a normal-
ized nonuniform kernel filters implies a positive trace of the
turbulent stress tensor and similarly a positive variance
varf(x) of a function f (x) ~see Ref. 15!. If the filter is con-
servative as well~e.g., self-adjoint! then

E
V

~ f ~x!!2dx5E
V

@~G f~x!!21varf~x!#dx

>E
V

~G f~x!!2dx. ~B3!

Evidently, inequality~61! holds.
Finally, we show that the second smoothing property

~61! is also valid for an orthogonal projection operator. If the
orthogonal basis functions are normalized then

E
V

G f2dx5Sk51
N ak

2<E
V

f 2dx, ~B4!

which relies on Parseval’s identity.
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